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a b s t r a c t

Among separation systems, the ones comprising separators effected by different separation methods have
been steadily gaining attention lately. Our earlier work has revealed that it is exceedingly complicated
to optimally synthesize via super-structure any of these separation networks featuring simple and sharp
separators, multiple feed and product streams, and mixed products. This complication can be substan-
vailable online 27 August 2008

eywords:
rocess synthesis
eparation network
educed super-structure

tially lessened by constituting a reduced super-structure for the network of interest. This super-structure
profoundly simplifies the mathematical model and decreases the computational time required to yield
the results identical to those obtained from the original super-structure.

© 2008 Elsevier Ltd. All rights reserved.
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. Introduction

Separation-network synthesis (SNS) is one of the most impor-
ant sub-disciplines of process synthesis: separation processes and
etworks are ubiquitous throughout the chemical and allied indus-
ries; see, e.g., King (1980), Huang, Ramaswamy, Tschirne, and
amarao (2008), Takoungsakdakun and Pongstabodee (2007), and
male and Lucia (2008). The energy demands and consequently the
perating costs of separation tasks tend not only to be inordinately
igh but also to be capital intensive. Naturally, it is highly desirable
hat the structures of separator networks be optimized; see, e.g.,
iegler, Grossmann, and Westerberg (1997) and Wang, Li, Hu, and
ang (2008).
A separation network comprising separators, mixers, and

ividers performs a sequence of separation tasks to yield the
esired product streams from the given feed streams (Floudas,
987). The multi-component streams present in the network are
istinguishable according to their locations in the separation net-
ork; they can be the feed, intermediate and product streams.
Various combinations of the separators, mixers, and dividers
ive rise to a multitude of separation networks, which are capable
f yielding the required product streams from a given multi-
omponent feed stream or streams. The aim of SNS is to identify

∗ Corresponding author. Tel.: +36 88 424483; fax: +36 88 428275.
E-mail address: friedler@dcs.vein.hu (F. Friedler).
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he structure of the most favorable separation network, often in
erms of cost, from a multitude of alternatives. A typical example is
he crude oil separation in which a countless number of products
re manufactured (Tahmassebi, 1986).

Herein, the term, separator family, is defined as a set of separators
hat are effected by the same physical or chemical property. Any
f the algorithmic methods for SNS tends to regard the available
eparators as belonging to a single separator family, e.g., the one
ffected by relative volatility. Nevertheless, separation networks,
ach containing separators from different separator families are
ecoming increasingly popular because of their immense potential
or substantial cost reduction.

Thompson and King (1972) were among the firsts to synthesize
eparation sequences or networks. They have developed a semi-
euristic, semi-algorithmic method, which is implementable on
computer. The most significant outcome of their work is the
ell-known Thompson formula for determining the number of the

eparation networks yielding pure products. The formula indicates
nequivocally that the number magnifies exponentially even for
his simple class of separation-network synthesis problems.

A heuristic method has been proposed by Emtir, Rév, Mizsey, and
onyó (1999), which takes into account the energy consumption

or the separation of three-component feeds. They compared the
nergy demand of the integrated and coupled systems for various
tilities. Demicoli and Stichlmair (2003) studied a separation net-
ork comprising complex, batch separators. They have proposed a
ovel operating mode for extracting efficiently the middle com-

http://www.sciencedirect.com/science/journal/00981354
http://www.elsevier.com/locate/compchemeng
mailto:friedler@dcs.vein.hu
dx.doi.org/10.1016/j.compchemeng.2008.08.003
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Nomenclature

Sets
C components
COa components in stream a
D dividers
F feeds
IM inner mixers
P products
PM product mixers
S separators

Parameters
FEk,c [kg/s] the component flowrate of component c in feed

k
OCs [$/kg] the overall cost coefficient of separator s
PRk,c [kg/s] the component flowrate of component c in feed

k

Variables
fa,c [kg/s] component flowrate of component c in stream a
xi,j feed allocation ratio in stream (i, j)

Greek symbol
�a splitting ratio of stream a

Functions
first(a) the feed stream a originated from
next(a) the set of elements following a
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uct mixers. An additional separator is incorporated only if it is
prev(a) the set of elements preceding a
prev2(a) prev(prev(a))

onent from a three component feed stream. In the first stage,
he separator is operated in the closed operating mode with total
eflux without product withdrawal. In the second stage, the com-
lex column functions as an inverted column on the top of a regular
ne.

Floudas (1987) has proposed a systematic computational
pproach to the SNS involving a single feed stream, mixed products,
nd simple and sharp separators with non-linear cost function. He
as solved the model resulting from the proposed super-structure
f the network by resorting to a conventional NLP algorithm in
AMS. A method has been introduced by Quesada and Grossmann

1995) to determine the global optima of SNS problems with linear
ost functions. The mathematical models based on the composi-
ion and component flowrates have been merged by resorting to a
eformulation-linearization technique to circumvent the complex-
ties due to the presence of bilinear terms in the model equations.

The notion of the rigorous super-structure has been presented
y Kovács, Ercsey, Friedler, and Fan (2000); it contains the optimal
etwork for every instance of the given problem. They have pro-
osed a novel algorithm for generating the rigorous super-structure
f an SNS problem involving only simple and sharp separators. The
esultant mathematical model is linear, thereby giving rise to the
olution without fail. More recently, Heckl, Kovács, Friedler, Fan,
nd Liu (2007) studied SNS involving separators of various fam-
lies. They have demonstrated that the resultant novel approach
an yield a solution superior to the solution obtained when SNS
s carried out taking into account a single separator family. In the

igorous super-structure proposed, the product streams are invari-
bly preceded by mixers. The mathematical model is formulated
n terms of the feed allocation ratios, which render possible the
olution by LP.
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o
a
v
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The algorithmic solution of any synthesis problem involves three
ajor steps including: the construction of the network’s structural
odel; the generation of the linear or non-linear mathematical

rogramming model on the basis of the structural model; and the
olution of the resultant model. Naturally, the larger the structural
odel, the more convoluted the mathematical model; and conse-

uently, the harder and slower it is to solve it. This implies that
t is imperative to construct the structural model with minimal
omplexity.

The current work reassesses a class of SNS problems, termed
NS-Multi for simplicity, posed by Heckl et al. (2007). Its aim is
o craft a reduced super-structure for SNS-Multi that renders it
ossible to substantially facilitate the solution. SNS-Multi can be
tated as follows: determine the cost-optimal separation network
or transforming the compositions of n-component feed streams to
btain the specified product streams with a given set of simple and
harp separators where the available separators may belong to dif-
erent separator families. Any separator’s cost is regarded as a linear
unction of its mass load, and the cost of the separation network is
he sum of the costs of the separators therein.

. SNS-Multi with unreduced super-structure

The main difference between SNS-Multi (Heckl et al., 2007) and
ny conventional SNS is that while the former takes into account
ultiple separator families, the latter involves only a single sepa-

ator family. Even at the dawn of SNS, Thompson and King (1972)
lluded to the feasibility of applying multiple separator families.
evertheless, it has attracted little attention. It is usually implicitly
nderstood that SNS is performed with a single separator family. It

s well known that (n − 1) different separations can be performed
n a stream containing n components using a single separator fam-
ly. k(n − 1) separations can be performed on such a stream applying
multiple separator families. For instance, the separation of a mix-

ure comprising propylene (component A), propane (component B),
nd propadiene (component C) into its components can be carried
ut using three different separator families including distillation,
xtractive distillation with a polar solvent, and extraction (King,
980). The component orders in the stream vectors are: A, B, and
for the first method; B, A, and C for the second method; and C,
, and B for the third method. Deploying various separator families
agnifies the search space, thereby enhancing the probability of

dentifying a solution, which is superior to that attainable using a
ingle separator family. For example, let us suppose that pure prod-
cts are to be produced from an n-component feed stream with
istillation only. If the relative volatilities of two components are
lose to each other, the cost of separation would be expensive. The
ost can be significantly reduced by adopting another separator
amily.

Heckl et al. (2007) have demonstrated that any SNS-Multi prob-
em invariably gives rise to an optimal structure in which mixers
recede only the products. These mixers are termed product mixers.
he significance of this property is that it specifies the positions of
he mixers in the super-structure, thus greatly reducing the num-
er of configurations to be explored. A stream can be linked only
o separators or to product mixers, the latter linkages being termed
ypasses. Naturally, the rigorous super-structure must contain all
easible configurations; as a result, every stream must be divided,
nd the outlets must be linked either to new separators or to prod-
ffective for separating at least one component contained in both
utlets. If more than one separator produces the same streams from
given input, only the least expensive separator is included. In con-
entional SNS, this is not an issue: each separator would produce
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s
or more separators can be merged if their overall cost coefficients
Fig. 1. Flowchart for generating the unreduced super-structure.

ifferent streams. The installation of a bypass between an outlet
f any divider and the inlet of a mixer is possible only when every
omponent in the former appears in the product stream from the
atter. This strategy gives rise to the super-structure of the SNS-

ulti. We term this super-structure the unreduced super-structure
o differentiate it from the super-structure to be constructed in the
urrent work. The flowchart for generating the unreduced super-
tructure is illustrated in Fig. 1, and a specific example is presented
n Fig. 2.

The initiation step creates one divider for each feed stream and
ne mixer for each product stream with appropriate linkages. The
ewly created dividers are termed unexplored, thus implying that
hey have not yet been examined in the iteration step. The iteration
tep selects any of the unexplored dividers, and subsequently cre-
tes a separator for each possible cut and a bypass to each mixer,
oth of which are connected to the selected divider. This is immedi-
tely followed by the generation of a divider for each of the outlets
rom the separators created. The iteration step is repeated until
ll the unexplored dividers are exhausted, thereby terminating the
xecution of the algorithm.

The mathematical model of the unreduced super-structure is
ormulated in terms of the feed allocation ratio, xi,j , introduced by
ovács et al. (2000), which specifies the fraction of the flowrate of
he feed stream in stream (i, j). One feed allocation ratio is defined
or each outlet of an individual divider. No additional variables need
o be defined to the outlets of the separators: a separator does
ot induce change in the feed allocation ratio. The feed allocation
atios completely determine the network’s structure, which in turn
etermines the compositions of each stream.
The cost of the network, comprising the costs of the separators,
s minimized based on the mathematical model. The cost of an indi-
idual separator can be calculated by multiplying the flowrate of the
nlet of the separator with its overall cost coefficient. The flowrate

a
d
t
t

ig. 2. Step-by-step generation of the unreduced super-structure: for clarity, every
ixer in this and all other figures is simplified as illustrated.

f any stream in the network can be expressed in terms of its feed
llocation ratio in conjunction with the appropriate component
owrates of the corresponding feed stream. Material balances must
old for the dividers, mixers, and separators in the super-structure.
ne mass-balance equation is associated with each divider, and one
ith each component of a product; these equations are needed for

he dividers and mixers. Material balances hold automatically for
he separators in this super-structure because they do not affect the
eed allocation ratios as mentioned earlier. Note that the equations
or the dividers reveal the difference between the feed allocation
atio and the well known splitting ratio. For any given divider, the
um of the splitting ratios of its outlets is always unity; in contrast,
he sum of their feed allocation ratios is equal to the feed allo-
ation ratio of its inlet. Naturally, the feed allocation ratios are in
he interval of [0, 1]. The resultant mathematical model is linear,
hereby giving rise to a great advantage: any linear model can be
olved efficiently and robustly. Nevertheless, the resultant super-
tructure magnifies exponentially with the number of components
n the feed stream. The current work is intended to circumvent such
situation.

. Simplification of separation structures

For practicality, simplification is almost always desirable as long
s it does not alter the network’s performance. The simplification of
separation network reduces the number of necessary separators,

hereby facilitating the network’s operation.

.1. Simplification based on identical splitting ratios

As pointed out in an earlier work (Heckl et al., 2007), the optimal
tructure can be simplified under some situations. Specifically, two
re identical due to the fact that: they are of the same type; the
ividers for the top outlet streams of the separators are connected
o the same mixer; and the dividers for the bottom outlet streams of
hese separators are also connected to the same mixer. Note that the
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Fig. 3. Merging of separators with the identical splitting ratios.

plitting ratios of the corresponding dividers are identical. Because
f the linearity of the costs of the separations, the merging of the
eparators affects neither the structure’s cost nor the operation of
he network: the streams entering and leaving the merged part of
he network remain invariant.

Fig. 3 illustrates the merging. The inlet streams, a1 and a2, in both
he unmerged and merged structures naturally must be identical.

oreover, to ensure that the outlet streams also remain identical,
he following relationships must hold for d1 and d2.

1 + c1 = d1 (1)

2 + c2 = d2 (2)

imilar equations must also hold for d3 and d4: the material bal-
nces need to be satisfied for each outlet of a divider. Expressing
he streams in terms of the component flowrates and taking into
ccount the types of separators result in the following expressions;

fb1,1, fb1,2, 0, 0] + [fc1,1, fc1,2, 0, 0] = [fd1,1, fd1,2, 0, 0] (3)

fb2,1, fb2,2, 0, 0] + [fc2,1, fc2,2, 0, 0] = [fd2,1, fd2,2, 0, 0] (4)
here fbi,j
, fci,j

, and fdi,j
, i, j = 1, 2, are the component flowrates of

he jth component in streams bi, ci, and di, respectively. The compo-
ent flowrates at the outlet of a divider can be calculated from those
f its inlet and from the splitting ratio of this outlet, for example,

�

�

Engineering 33 (2009) 687–698

ee the following equation.

b1
[fa1,1, fa1,2] = [fb1,1, fb1,2] (5)

xpressing the component flowrates at each outlet similarly trans-
orms Eqs. (3) and (4), respectively, into

b1
[fa1,1, fa1,2] + �c1 [fa2,1, fa2,2] = �d1

([fa1,1, fa1,2] + [fa2,1, fa2,2])

(6)

b2
[fa1,1, fa1,2] + �c2 [fa2,1, fa2,2] = �d2

([fa1,1, fa1,2] + [fa2,1, fa2,2])

(7)

here �bi
, �ci

, and �di
, i = 1, 2, are the splitting ratios of streams

i, ci, and di, respectively.
The solution of the mathematical model yields the optimal

tructure, for which the component flowrates and the splitting
atios are known. As a result, only the splitting ratios in the merged
tructure, �d1

and �d2
, are unknown. The two separators can be

erged only if the system of equations, comprising Eqs. (6) and (7),
as a solution. This system of equations, however, is overdefined: it
as 2 variables and 4 equations, thus, rendering them solvable only

n special cases. For example, the system is solvable if the splitting
atios corresponding to the same outlets are identical as expressed
elow.

b1
= �c1 (8)

b2
= �c2 (9)

hese equations also imply that �b1
= �d1

and �b2
= �d2

. It is worth
oting that the equations similar to Eqs. (1) and (2) must hold for
he divider of the bottom streams in Fig. 3. The drawback of this
implification is that it can be implemented only after the opti-
al structure is determined when the values of the feed allocation

atios, and consequently, the splitting ratios become known.

.2. Simplification based on identical inlet composition

A judicious analysis reveals that the system of equations, com-
rising Eqs. (6) and (7), can also be solved under the condition that
he compositions of the inlets of the two separators are identical,
.e.,

[fa1,1, fa1,2] = [fa2,1, fa2,2] (10)

ubject to this equality, Eqs. (6) and (7) can be rewritten, respec-
ively, as

�b1
+ ��c1

1 + �
= �d1

(11)

�b2
+ ��c2

1 + �
= �d2

(12)

qs. (11) and (12) do not demand that the separators be connected
o the same mixers. The merged separator will be connected to each
f such mixers to which either of the original separator is connected.
ig. 4 illustrates a simplification based on identical inlet composi-
ion. In this figure, Eq. (10) holds for the two separators with � = 2.
he divider for the top stream of the merged separator is connected
o three operating units, S1, M1, and M2; the corresponding splitting
atios can be calculated, respectively, as follows:
d1
= 0.3 + 2 × 0

1 + 2
= 0.1 (13)

d2
= 0.7 + 2 × 0.8

1 + 2
= 0.7666 (14)
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Fig. 5. Part of the super-structure before merging separators.

b
a
i
the number of variables.

Our aim is to merge all suitable separators in the unreduced
super-structure based on identical inlet composition. The resulting
structure is termed the reduced super-structure of the SNS-Multi
problem. In the unreduced super-structure the mixers always
Fig. 4. Merging of separators with identical inlet composition.

d3
= 0 + 2 × 0.2

1 + 2
= 0.1333 (15)

. Reduced super-structure

Simplification based on identical inlet composition is much
ore effective than simplification based on identical splitting

atios. While the former can be applied to both the solution struc-
ures and the super-structure, the latter is applicable only to the
olution structures. Let us suppose that stream a is the inlet of sep-
rator Si. The component flow rates of stream a can be described
ith the following equation;

a,i =
{

xa · FEfirst(a),c c ∈ COa

0 c /∈ COa
(16)

here FEk,c is the flowrate of component c in feed k; first(a) indi-
ates the feed stream from which stream a originates; and COa is
he set of components in stream a.

Let stream b the inlet of another Si-type separator; first(a) =
rst(b); and COa = COb. In other words, streams a and b originate

rom the same feed, and thus, they contain the same components.
s such, the two streams can be merged: they have the same com-
ositions.

It is worth emphasizing that the compositions of the streams
f the super-structure are known, thereby simplification based on
dentical inlet composition can be executed on the super-structure
rior to optimization. Merging the separators reduces the size of
he super-structure, thus simplifying the mathematical model and
educing the solution time. Let us focus on Fig. 5, which exhibits part
f the unreduced super-structure of a separation network with a

ve-component feed stream. Streams a and b have the same compo-
ition, and therefore, the two S2-type separators as well as the two
3-type separators can be merged. The resultant simplified struc-
ure is illustrated in Fig. 6. The encircled part of this figure contains
wo dividers and two mixers. The compositions of streams a and

F
m

Fig. 6. Part of the super-structure after merging separators.

are identical; as a result, it is possible to mix the streams first
nd divide them later; see Fig. 7. This simplification is significant:
t minimizes the number of divider outlets, thus further decreasing
ig. 7. Part of the super-structure after exchanging the positions of dividers and
ixers.
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Fig. 8. Flowchart for genera

recede the product streams; in contrast, in the reduced super-
tructure mixers can be found elsewhere. These new mixers are
ermed inner mixers; all their inlets have the same composition.
he reduced super-structure is also a rigorous super-structure: the
nreduced super-structure has been proved to be rigorous, and
hus, the simplification only on the basis of the identical inlet
omposition does not exclude any potentially optimal structure; it

nly eliminates unnecessary duplications. Consequently, both the
nreduced and reduced super-structures lead to optimal solutions.
oreover, these two solutions are identical if the problem under

onsideration has a unique optimum, and all possible simplifica-
ions are performed on the solution structures.

p
p
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e reduced super-structure.

There are two possibilities to generate the reduced super-
tructure. The first generates the unreduced super-structure as
escribed in an earlier work (Heckl et al., 2007) and then carries out
ll the possible mergers based on the identical inlet composition;
he second generates the reduced super-structure directly from the
nput data. The streams originating from the same feed stream in
he reduced super-structure are mixed if they have identical com-

osition. In the reduced super-structure, therefore, an inner mixer
recedes every divider, though the mixer might be equipped only
ith a single inlet; see Fig. 7. Introducing inner mixers does not
agnify the size of the mathematical model: variables are assigned

nly to the outlets of each divider.
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OCs, the overall cost coefficient of separator s. prev(a) signifies the
set of operating units preceding a, and prev3(a) is a shorthand for
prev(prev(prev(a))). Similarly, next(a) signifies the set of operat-
ing units succeeding a. Thus, the objective function in terms of the
ig. 9. Generation of the reduced super-structure: initialization and iteration 1.

What follows describes the stepwise generation of the reduced
uper-structure; see Fig. 8. In the initialization step, one divider
s created for and linked to each feed stream, and one mixer is
reated for and linked to each product stream; see Fig. 9. Subse-
uently, an iteration is performed as long as some dividers remain
nexplored. In the iteration, an unexplored divider is selected and
separator for each possible separation is created and connected

o the selected divider. By taking into account several separator
amilies, various separators linked to the selected divider, would
ield identical outlet streams. Obviously, only the least-cost sepa-
ator should be retained in the reduced super-structure in this case.
ubsequently, the outlets from the separators created for each pos-
ible separation are examined. If the compositions of these outlets
re the same as the composition of a stream, which is already in the
etwork and connected to an inner mixer, the new outlet is also con-
ected to the same mixer. Otherwise, a new mixer–divider pair is

ormed for and connected to this outlet. The new divider is marked
nexplored. Afterward, a bypass is created from the selected divider
o each product mixer created in the initialization step. The creation
f a bypass between an outlet of any divider and the inlet of a prod-
ct mixer is possible only when every component in the outlet of
he divider appears in the product stream from the mixer. Finally,
he selected divider is marked explored.

Figs. 9–12 illustrate the generation of the reduced super-
tructure of a five-component example. Fig. 9 shows the
nitialization and the first iteration. The encircled divider is selected
t the iteration step. No inner mixer exists in the structure at this
ime; thus, a new mixer–divider pair is formed for every sepa-
ator outlet. In Fig. 10 the inlet of the selected divider contains
single component, and thus, no further separation is possible;

onsequently, only bypasses are created in this iteration. The third
teration, exhibited in Fig. 11, indicates that a new mixer–divider
air is formed for the top outlet of separator S4, but the bottom out-

et is connected to an inner mixer already present in the network.
he final reduced super-structure is displayed in Fig. 12.

. Mathematical model
The mathematical model of the reduced super-structure is for-
ulated in terms of the feed allocation ratios. Formulating the
athematical models on the basis of compositions or component
Fig. 10. Generation of the reduced super-structure: iteration 2.

owrates gives rise to non-linear terms in the governing equations
f either the separators or the dividers.

Let C, F, P, D, PM, IM, and S be the index sets for the components,
eeds, products, dividers, product mixers, inner mixers, and separa-
ors, respectively. Consequently, FEk,c is the flowrate of component
in feed k; PR , the flowrate of component c in product k; and
Fig. 11. Generation of the reduced super-structure: iteration 3.
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ig. 12. Generation of the reduced super-structure: iteration 18 and final structure.

eparation cost, comprising the cost of each separator, is

=
∑
∀s ∈ S

⎛
⎝OCsxprev(s),s

∑
∀c ∈ COprev(s),s

FEfirst(s),c

⎞
⎠ , (17)

hich is to be minimized subject to the following constraints;

=
∑

∀j ∈ next(d)

xd,j , ∀d ∈ next(F) (18)

∑
i ∈ prev3(d)

xi,next(i) =
∑

∀j ∈ next(d)

xd,j , ∀d ∈ D \ next(F) (19)

∑
i ∈ prev(m)

∑
∀c ∈ COi

(xi,mFEfirst(i),c) = PRnext(m),c , ∀m ∈ PM,∀c ∈ C (20)

≤ xd,j ≤ 1, ∀(d, j) ∈ D × {S ∪ PM} (21)

he cost of each separator is calculated as the product of its over-
ll cost coefficient, OCs, and the flowrate of the separator’s inlet
tream. Moreover, COprev(s),s is the set of components present in
he stream at the inlet of separator s, and xprev(s),s is the feed alloca-
ion ratio at this inlet. Note that several paths may lead backward
rom separator s in the reduced super-structure. An inner mixer
epresents a junction in a path while going backward from a sep-
rator; however, all these paths originate from the same feed, and
hus, first(s) is unique. Eq. (18) signifies the dividers for the feed
treams; at these dividers, the splitting ratio and the feed alloca-
ion ratio are identical. Eq. (19) represents the material balances

round the inner mixer–divider pair. The sum of the feed alloca-
ion ratios at the inlets of the inner mixer is equal to the sum of
he feed allocation ratios at the outlets of the succeeding divider. It
s worth noting that the feed allocation ratios are not assigned to
he inlets of inner mixers, and therefore, the feed allocation ratios at

s
w

s
d

Fig. 13. Material balance around a mixer–divider pair.

he inlets of the separators preceding the inner mixers are used. The
eparators do not alter the feed allocation ratios. Eq. (19) imposes
constraint on each component in every product. This equation

tates that the sum of the component flowrates at the inlets of a
roduct mixer must be PRnext(m),c . It is possible to define a product
ithout specifying the exact amounts of the components therein.

or example, we can prescribe the ratios of the components, the
pper and lower bounds of the flowrates of the components, or the
inimum or maximum amount of the product. The model’s capa-

ility is limited only by the requirement that all such constraints be
inear as well. Eq. (21) is a natural assumption, indicating that xi,j

annot be negative or exceed one.
The material balance around an inner mixer–divider pair is illus-

rated in the following with a specific example illustrated in Fig. 13;
t gives

D1,S4 + xD2,S1 = xD3,S2 + xD3,S3 + xD3,M2 (22)

n this example, prev3(D3) = {D1, D2}, next(D3) = {S2, S3, M2}.
Succeeding the generation, the sizes of the unreduced and

educed super-structures are compared quantitatively.

. Mathematical complexity

As mentioned earlier, the optimal structures derived on the basis
f the unreduced and reduced super-structures are identical if the
ptimum is unique. The profound advantage of the reduced super-
tructure is that it gives rise to the simplified mathematical model,
hus facilitating the solution.

The size of the mathematical model derived from either the
nreduced or reduced super-structures depends on the parameters
f the specific example, such as the numbers of the components and
vailable separators, as well as on the numbers and compositions
f the feed and product streams. Let us suppose that the separa-
ion network has only one feed stream and the available separators
elong to a single family. As such, the most important parameter
ffecting the size of the mathematical model is the number of com-
onents. The number of variables in the mathematical model equals
he number of all the outlets of the dividers throughout the super-
tructure. These outlets are linked either to the separators or to the
ixers. The number of divider outlets linked to the mixers for the

roducts depends on the compositions in the products, thereby ren-
ering it difficult to determine the exact number of variables. On the
ther hand, the number of separators in the unreduced and reduced

uper-structures can be given explicitly; thus, the super-structures
ill be characterized and compared on the basis of these numbers.

Let SN(n) be the number of separators in the unreduced super-
tructure, where n is the number of components. The following
etails the calculation and simplification of SN(n).
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Table 1
The number of separators in the unreduced, SN(n), and the reduced super-structure,
CN(n), based on component number, n

n 2 3 4 5 6 7 8 9 10

SN(n) 1 4 13 40 121 364 1093 3280 9841
CN(n) 1 4 10 20 35 56 84 120 165

Table 2
Component flowrates of the feed and the product streams of the first example

c1 (kg/s) c2 (kg/s) c3 (kg/s) c4 (kg/s)
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or

CN(n) =
n∑

i=2

(−i2 + n · i + 2 · i − n − 1) (36)

Table 3
The separators available in the first example

Separator
designation

Top-product
components

Bottom-product
components

Overall cost
coefficient, gs

S1 c1 c2, c3, c4 4
S2 c1, c2 c3, c4 2
S3 c1, c2, c3 c4 3

Table 4
Component flowrates of the feed and the product streams of the second example

c1 (kg/s) c2 (kg/s) c3 (kg/s) c4 (kg/s) c5 (kg/s) c6 (kg/s) c7 (kg/s)

F 23 19 25 21 26 26 12
I. Heckl et al. / Computers and Che

Suppose that the separation occurs between the ith and the
i + 1) st component, thus requires one separator. The number of
eparators continues to increase beyond one: additional separators
re needed to process the outlets of the current separator. The top
nd bottom outlets contain i and (n − i) components, respectively,
nd therefore [SN(i) + SN(n − i)] additional separators are required.
he initial separation can occur between the first and second com-
onents, the second and third components, and so on, thus yielding
he following formula for SN(n) containing the sum;

N(n) =
n−1∑
i=1

[1 + SN(i) + SN(n − i)]

= (n − 1) +
n−1∑
i=1

[SN(i) + SN(n − i)] (23)

here

n−1

i=1

1 ≡ n − 1. (24)

Obviously, no separation is needed for a pure component, i.e.,
= 1, and thus, SN(1) = 0.

N(n) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 + SN(1) + SN(n − 1)
+1 + SN(2) + SN(n − 2)
+1 + SN(3) + SN(n − 3)
. . .
. . .
. . .
+1 + SN(n − 2) + SN(2)
+1 + SN(n − 1) + SN(1)

(25)

N(n) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 + SN(1) + SN(n − 2)
+1 + SN(2) + SN(n − 3)
+1 + SN(3) + SN(n − 4)
. . .
. . .
. . .
+1 + SN(n − 2) + SN(1)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

= SN(n − 1)

+1 + SN(n − 1) + SN(n − 1)

(26)

nd thus,

N(n) = 3 · SN(n − 1) + 1 (27)

o determine the growth of SN(n), the current recursive form must
e reformulated. The first step is to unfold the sum; see Eq. (25).
ubsequently, the terms must be reordered; see Eq. (26). It is worth
oting that SN(n) contains SN(n − 1), and therefore, a different
ecursive form can be generated for SN(n); see Eq. (27). Adding 1/2
o both sides of Eq. (27) yields

N(n) + 1
2

= 3 · SN(n − 1) + 3
2

= 3 ·
[

SN(n − 1) + 1
2

]
(28)

y defining

(n) ≡ SN(n) + 1
2

, (29)

e obtain
(n) = 3 · g(n − 1) (30)

ontinuing,

(n) = 3 · 3 · g(n − 2) = · · · = 3n−1 · g(1) (31)

F
P
P
P
P

1 10 8 12 4
1 2 3 5 1
2 3 1 2 1
3 5 4 5 2

ince

(1) = SN(1) + 1
2

= 0 + 1
2

= 1
2

, (32)

e have, from Eq. (31),

(n) = 3n−1

2
(33)

ubstituting the above expression into Eq. (29) yields

N(n) = 3n−1 − 1
2

(34)

his closed form indicates explicitly that SN(n) grows exponentially
s n increases.

Let CN(n) be the number of separators in the reduced super-
tructure where n is the number of components. What follows
etails the evaluation and simplification of the formulae for CN(n).
uppose that all the available separators belong to a single family.
onsequently, if a stream contains i adjacent components, (i − 1)
eparations can be carried out on this stream. Because of its con-
guration, the reduced super-structure contains (n + 1 − i) streams
ith i components adjacent to each other where n is the number

f components in the feed; i can be any integer number between 2
nd n, thereby yielding

N(n) =
n∑

i=2

[(n + 1 − i) · (i − 1)] (35)
1

2 12 11 8 6 2 6 15
1 9 3 6 8 4 10 13
2 14 10 8 8 11 5 9
3 5 10 10 3 1 4 2
4 7 7 9 8 12 13 3
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Table 5
The separators available in the second example

Separator
designation

Top-product
components

Bottom-product
components

Overall cost
coefficient, gs

SR1 c1 c2, c3, c4, c5, c6, c7 1.5
SR2 c1, c2 c3, c4, c5, c6, c7 3
SR3 c1, c2, c3 c4, c5, c6, c7 2
SR4 c1, c2, c3, c4 c5, c6, c7 2.5
SR5 c1, c2, c3, c4, c5 c6, c7 4
SR6 c1, c2, c3, c4,

c5, c6
c7 4

SE1 c4 c6, c3, c1, c7, c2, c5 4.5
SE2 c4, c6 c3, c1, c7, c2, c5 1
SE3 c4, c6, c3 c1, c7, c2, c5 2.5
SE4 c4, c6, c3, c1 c7, c2, c5 3.5
SE5 c4, c6, c3, c1, c7 c2, c5 1.75
SE6

S

P
i

C

w

∑

∑

∑
Thus,
c4, c6, c3, c1, c7,
c2

c5 4.5

K1 c1, c5, c3, c4 c7, c2, c6 6.6

artitioning the sum in the right-hand side of the above expression
nto 3 parts results in

N(n) =
n∑

i=2

(−i2) +
n∑

i=2

[i · (n + 2)] +
n∑

i=2

(−n − 1) (37)

here

n

i=2

(−i2) = −
[

n∑
i=1

(−i2) − 1

]
= −

(
2 · n3 + 3 · n2 + n

6
− 1

)

= −n3

3
− n2

2
− n

6
+ 1 (38)

n

i=2

[i · (n + 2)] = (n + 2) ·
n∑

i=2

i = (n + 2) ·
[

n · (n + 1)
2

− 1
]

= n3

2
+ 3 · n2

2
− 2 (39)
n

i=2

(−n − 1) = (n − 2) · (−n − 1) = −n2 + 1 (40)
C

N

Fig. 14. Optimal structure
Fig. 15. Optimal structure of the second example.
N(n) = n3 − n

6
(41)

ote that CN(n) grows polynomially with n.

of the first example.
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Table 6
Component flowrates of the feed and the product streams of the third example

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15

F1 23 19 25 21 26 26 2 6 4 2 7 5 5 9 8
F2 12 11 8 6 2 6 8 4 6 1 1 9 5 3 4
F3 2 1 7 6 8 2 5 3 2 7 2 8 4 6 8
F4 2 3 5 7 11 13 17 23 27 31 37 7 6 4 5
P1 11 6 11 15 15 23 20 24 32 32 40 3 8 5 1
P2 16 11 15 8 6 5 2 1 2 3 1 7 2 7 4
P3 5 14 10 3 11 4 2 4 2 2 5 10 6 8 12
P4 7 3 9 14 15 15 8 7 3 4 1 9 4 2 8

Table 7
The separators available in the third example

Separator designation Top-product components Bottom-product components Overall cost coefficient, gs

SR1 c1 c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14, c15 1.5
SR2 c1, c2 c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14, c15 3
SR3 c1, c2, c3 c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14, c15 2
SR4 c1, c2, c3, c4 c5, c6, c7, c8, c9, c10, c11, c12, c13, c14, c15 2.5
SR5 c1, c2, c3, c4, c5 c6, c7, c8, c9, c10, c11, c12, c13, c14, c15 4
SR6 c1, c2, c3, c4, c5, c6 c7, c8, c9, c10, c11, c12, c13, c14, c15 2
SR7 c1, c2, c3, c4, c5, c6, c7 c8, c9, c10, c11, c12, c13, c14, c15 3
SR8 c1, c2, c3, c4, c5, c6, c7, c8 c9, c10, c11, c12, c13, c14, c15 5
SR9 c1, c2, c3, c4, c5, c6, c7, c8, c9 c10, c11, c12, c13, c14, c15 3
SR10 c1, c2, c3, c4, c5, c6, c7, c8, c9, c10 c11, c12, c13, c14, c15 2
SR11 c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11 c12, c13, c14, c15 4
SR12 c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12 c13, c14, c15 2.7
SR13 c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13 c14, c15 6
SR14 c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14 c15 2.3
SE1 c5 c15, c8, c9, c1, c6, c7, c3, c4, c10, c11, c14, c13, c12, c2 7
SE2 c5, c15 c8, c9, c1, c6, c7, c3, c4, c10, c11, c14, c13, c12, c2 5
SE3 c5, c15, c8 c9, c1, c6, c7, c3, c4, c10, c11, c14, c13, c12, c2 3
SE4 c5, c15, c8, c9 c1, c6, c7, c3, c4, c10, c11, c14, c13, c12, c2 1
SE5 c5, c15, c8, c9, c1 c6, c7, c3, c4, c10, c11, c14, c13, c12, c2 6
SE6 c5, c15, c8, c9, c1, c6 c7, c3, c4, c10, c11, c14, c13, c12, c2 5.2
SE7 c5, c15, c8, c9, c1, c6, c7 c3, c4, c10, c11, c14, c13, c12, c2 3.4
SE8 c5, c15, c8, c9, c1, c6, c7, c3 c4, c10, c11, c14, c13, c12, c2 4.5
SE9 c5, c15, c8, c9, c1, c6, c7, c3, c4 c10, c11, c14, c13, c12, c2 3.6
SE10 c5, c15, c8, c9, c1, c6, c7, c3, c4, c10 c11, c14, c13, c12, c2 2
SE11 c5, c15, c8, c9, c1, c6, c7, c3, c4, c10, c11 c14, c13, c12, c2 4
SE12 c5, c15, c8, c9, c1, c6, c7, c3, c4, c10, c11, c14 c13, c12, c2 2.9
SE13 c1
S c2
S c1
S c1
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c5, c15, c8, c9, c1, c6, c7, c3, c4, c10, c11, c14, c13
E14 c5, c15, c8, c9, c1, c6, c7, c3, c4, c10, c11, c14, c13, c12
K1 c1, c2, c3, c4, c8, c9, c10, c11, c12, c13, c14
K2 c1, c2, c9, c10, c11, c12, c13, c14

It is worth noting that as discernable from their closed forms, the
ates of growth of SN(n) and CN(n) are exponential and polynomial,
espectively. Moreover, the latter is not noticeably steep. Table 1
llustrates the rates of growth of SN(n) and CN(n).

In the following, the method based on the reduced super-
tructure will be applied to three examples. Our theoretical
xploration indicates that the computation and effort required will
ecrease substantially.

. Examples

In the first example, 3 multi-component product streams are
o be produced from a 4-component feed stream. All separa-
ors belong to a single separator family. Tables 2 and 3 contain
he input data. The generation of the reduced super-structure
s illustrated in Figs. 9–12. Subsequently, the mathematical pro-
ramming model is generated from the reduced super-structure.
his example features 10 separators and 10 dividers; each divider
s connected to all 3 product mixers. Consequently, there are

0 divider outlets in the reduced super-structure, representing
0 variables in the mathematical programming model. If this
odel is based on the unreduced super-structure, the number of

ariables is 94. Fig. 14 exhibits the optimal structure of the exam-
le.

8

p

2, c2 3
2.3

5 0.2
5 0.1

The second example comprises 7 components, 2 feed streams,
product streams, and 13 separators belonging to 3 separator fam-

lies. Tables 4 and 5 list the input data. The optimal structure is
xhibited in Fig. 15. The cost of the network is 261.1 $/s. The same
ptimal structure is obtained with either the reduced or unreduced
uper-structure; however, the computational time with the former
s 0.453 s, and that with the latter 15 s on a PC (AMD-XP 3 GHz).
s mentioned earlier, the difference in the solution time increases
apidly with the increase in the problem size.

The third example comprises 15 components, 4 feed streams,
product streams, and 30 separators from 3 different separator

amilies. Tables 6 and 7 list the input data. The cost of the network
s 1193.9 $/s. With the reduced super-structure, this problem has
een solved within merely 86.1 s on the same PC mentioned above
hile with the unreduced super-structure the problem has failed

o yield a solution.
The solver and the three examples together are available

or downloading from web page http://www.dcs.vein.hu/capo/
emo/sns/heckl2008.
. Conclusions

The current work re-addresses a separation-network synthesis
roblem involving various separator families based on different

http://www.dcs.vein.hu/capo/demo/sns/heckl2008
http://www.dcs.vein.hu/capo/demo/sns/heckl2008
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eparation methods. A systematic method is proposed for con-
tructing the reduced super-structure of the problem. It has been
roved that this reduced super-structure leads to the same optimal
tructure as that obtained with the unreduced super-structure.
he closed form of the formulae has been derived to compute
he sizes of the reduced as well as unreduced super-structures.

ith the increase in the problem size, the former magnifies only
ubically, while the latter magnifies exponentially. Consequently,
roblems of the type considered in the current work can be solved
ubstantially faster with the reduced super-structures than with
he unreduced super-structures.

The main advantages of the proposed method are: it is algorith-
ic at each step; insures the generation of the optimal solution;

nd exceedingly effective so that it is applicable to problems of
onsiderable sizes. Nonetheless, it has some limitations also: only
ingle and sharp separators with proportional cost functions are
aken into account. The future work would involve separators with
arious cost functions and/or non-sharp separators.
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