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ABSTRACT:Methods for solving batch process scheduling problems have gone through a vast development in the last 2 decades.
Most of the published approaches are based on a mixed integer programming formulation. Since the difficulty of scheduling is
originated from its combinatorial nature, graphs and combinatorial algorithms are more adequate to represent and solve the
problem. Although, combinatorial algorithms and data structures have an enormous literature, these algorithms can not be directly
applied to scheduling and further elaboration is needed. In the present work, the combinatorial nature of batch scheduling problems
is analyzed. Several combinatorial algorithms are listed that can be considered for the scheduling of batch processes. Their proper
adaptation is illustrated via the S-graph framework, in which the main emphasis lies on the combinatorial tools. Furthermore, Place
Petri Nets and Timed Automata are also briefly described. An S-graph algorithm has been extensively compared with well-known
MILP formulations.

’COMBINATORIAL NATURE OF BATCH PROCESS
SCHEDULING

Scheduling is a key problem in the operation of batch plants.
The industry generates a wide range of batch scheduling problems,
where the goal in general is to allocate the tasks of the process to
the available equipment units in the most favorable way.1,2 An
ordinary batch scheduling problem is given by themaster recipe of
the process, the objective, and the intermediate storage policy. The
most common objectives are the minimization of the whole
processing time, i.e., makespan, or the maximization of the
throughput or profit over a fixed time horizon. According to
different problems, the storage policy can vary between unlimited
intermediate storage (UIS), finite intermediate storage (FIS),
common intermediate storage (CIS), nonintermediate storage
(NIS), and zero-wait (ZW).3,4 Problem specification may include
further parameters, e.g., transfer times, changeover times, or
variable processing times.5 The recipe defines the set of products
to be produced, the network of tasks to produce the desired
products, the available equipment units, processing times, stoi-
chiometric data, etc. In the case of a complex recipe, i.e., when the
process does not have sequential characteristics, the unambiguous
representation of the network of the tasks is not evident.6 In batch
process scheduling, mostly directed graphs, e.g., State-Task-Net-
work (STN),7 Resource-Task-Network (RTN),8 State-Sequence-
Network (SSN),9 S-graph,10 Timed Place Petri Net (TPPN),11 or
Priced Timed Automata (PTA)12 are applied for this purpose.
Despite the wide range of available graph representations, most of
the approaches consider them only as a graphical representation
and not as the model for the optimization.

The combinatorial nature of batch scheduling problems derives
from the two main decisions to be made during the optimization
process: (i) which processing unit is assigned to a task (if more
than one is available) and (ii) what is the order of the tasks to be
performed in an equipment unit. Moreover, if the objective is to
maximize the throughput, the optimal number of batches has to be
also identified, which is an additional computational issue.

Even though the major decisions are made in discrete space,
the problems may involve decisions on continuous variables, e.g.,
batch sizing, that can usually be handled with an LPmodel, which
requires much less computational effort compared to the combi-
natorial part of the problem.

’COMBINATORIAL ALGORITHMS

Combinatorial algorithms that operate on graphs and sets
rather than continuous variables or functions can usually address
problems with discrete decisions in a straightforward way, which
is often beneficial in terms of the computational efforts. This type
of algorithms has an enormous literature,13 with an excessive
introduction to the basic algorithms is given by Cormen et al.14

The algorithms and data structures presented in this book are
usually not directly adaptable to real life problems, but they can
be applied as subroutines in an algorithm that has been con-
structed to meet the specific requirements. Some of the combi-
natorial algorithms also appearing in batch process scheduling
are shortly described below.
Cycle Detection Algorithm. For a given directed graph, the

existence of a cycle among the vertices can be decided by the so-
called colored depth-first-search algorithm. The algorithm is
based on the well-known depth first search originally developed
by Tarjan;15 however, it also assigns three different colors to each
vertex, denoting whether the vertex is (a) undiscovered, (b)
discovered but not finished, or (c) finished. With the appropriate
data structures, the algorithm can detect a cycle or prove its
nonexistence in as many steps as the sum of the number of the
vertices and arcs.
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Longest Path Algorithm. If the arcs of a directed graph have
weights, it is a common aim to find a path, in which the sum of the
weights is maximal. The problem is hard to solve in its general form;
however, a slightly modified version of Dijkstra’s algorithm14 can
efficiently return the longest path, if the graph is known to be acyclic.
Branch-and-Bound Algorithm. When the optima is to be

found in a given set, branch-and-bound algorithms16 usually
reduce the computational needs compared to an exhaustive
enumeration. A branch-and-bound algorithm consists of two
functions.17 The branching function splits a set of candidate
solutions into smaller subsets until singleton sets are achieved;
thus, the solution of the original problem is decomposed to the
solution of smaller subproblems. The bounding function pro-
vides a lower bound for the candidates in a certain subset,
assuming that the objective is to be minimized. If the bound is
worse than the best solution found so far, the corresponding
subset is pruned from the set of open subproblems in the proven
absence of optimal solution. The efficacy of this type of algo-
rithms strongly depends on the selection of these functions and
the selection strategy of unexamined subproblems.
Further Combinatorial Algorithms. Specific combinatorial

algorithms are widely applied for scheduling problems of other
areas.18,19 Moreover, there is a long list of additional combina-
torial algorithms that can be applied for solving specific problems
or for acceleration of the search. To mention a few of these
algorithms: the so-calledHungarianmethod20 for the assignment
problem,21 Johnson’s algorithm22 for flow-shop problems with
two machines, or Jackson’s algorithm23 for job-shop problems
with two machines.

’COMBINATORIAL ALGORITHMS FOR BATCH PRO-
CESS SCHEDULING

The idea of applying combinatorial algorithms for the sche-
duling of batch processes arised at a scientific discussion initiated
by professor Luis Puigjaner, which resulted in the establishment
of the S-graph framework appearing in 1998. Since then, several
Ph.D. works further developing the framework have been pre-
pared in both Barcelona24�26 and Veszprem.27,28

At its birth, the S-graph framework has been presented to solve
makespan minimization problems with NIS policy, fixed proces-
sing time, and batch sizes. The originality of this approach was its

new, graph-based mathematical model and a problem specific
solution procedure. In the following subsections, the application
of the previously mentioned combinatorial algorithms for batch
process scheduling is illustrated via the S-graph framework.
Mathematical Model: The S-Graph. The S-graph framework

employs a special directed graph for the optimization, called the
S-graph.10 The problem is represented by an S-graph, where a
vertex is assigned to each task and product of the process. The
precedence rules defined by the recipe are expressed by the so-
called recipe-arcs, whose weight is the processing time of the task
represented by the starting node of the arc.
The S-graph representing the recipe of an example is given in

Figure 1. The process consists of two products (P1 and P2) that
are produced through five processing steps (T1�T5). Product
P1 can be performed by two sequential operations T1 and T2,
which have processing times 3 and 4, respectively. For the sake of
simplicity, in this illustrative example, the processing times of the
tasks do not depend on the selection of the plausible equipment
units. The first task of the first product can be performed either in
equipment unit E1 or E2. The second task has also two plausible
units, namely, E2 and E3. The production of the second product
(P2) has two initiative tasks, T3 and T4, which provide different
inputs for task T5 that produces the final product. Task T4 is
identical to task T1, and tasks T3 and T5 can be performed in 4 h
by the units E3 and E2, respectively. In this example one batch is
to be produced from both of the products. In the case of multiple
batches, the graph corresponding to the product has to be copied
to construct the S-graph representing the recipe. Note, that recipe-
arcs represent timing precedences, i.e., if a recipe-arc leads from
task Ti to Tj with the weight of PTj, the execution of task Tj has to
start at least PTi, time units later than the execution of task Ti.
During the optimization procedure, the discrete decisions

described in the first section are made and the graph is modified
accordingly. If a unit is assigned to a task, the set of plausible units
is replaced by that single unit. Moreover, the ordering of tasks
assigned to the same unit is expressed by zero-weighted arcs, so-
called schedule-arcs. In Figure 2, a partial schedule is represented
by an S-graph. Unit E1 has been assigned to task T4; moreover, it
has been decided that task T2 will be performed in unit E3
right after it has finished performing T3 and loaded its output to
unit E2 for task T5. This latter decision is expressed by the
zero-weighted schedule-arc leading from task T5 to task T2, since
E3 cannot undertake task T2 until it has been emptied.

Figure 2. Partial schedule represented by an S-graph.

Figure 1. S-graph corresponding to the recipe.
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Since both the schedule and the recipe-arcs express timing
precedence between the execution of the tasks, the existence of a
cycle would mean an infeasible schedule. Hence, after each
decision, the resultant S-graph is tested for containing a cycle
with the colored depth-first-search algorithm. If the graph is not
acyclic, the decision is disapproved.
If all the necessary decisions have been made, the resultant

S-graph uniquely defines a schedule and the corresponding
Gantt-chart. In Figure 3, the remaining decisions have been
made in such a way that both tasks T1 and T4 will be performed

in unit E1, starting with T4. For a scheduled S-graph, the longest
path represents the critical path in the schedule, thus its value is the
makespan itself. In this schedule the longest path is T3f T5f
T1 f T2 f P1 with a length of 11 h.
An other possible schedule including the decisions of the

partial schedule in Figure 2 is given with its Gantt-chart in
Figure 4 that has the makespan of 15 h. The optimal schedule
with the makespan of 8 h is given in Figure 5.
With minimization of the makespan, the optimization algo-

rithm explores a branch-and-bound search tree, in which one
S-graph corresponds to each node. The root of the tree is the
S-graph that corresponds to the recipe, while the S-graphs at
the leafs represent the possible schedules of the problem. The
intermediate nodes correspond to partial schedules that are an
extension of the S-graph corresponding to their parent node.
As it was mentioned, the efficiency of a branch-and-bound

algorithm strongly depends on the selection of the branching and
the bounding function and the node selection strategy. Two
different types of branching functions have been published in the
literature: the equipment-based method,10 in which the decision
is made to select the next task to be performed by a certain unit;
and the task-based method,28 in which an equipment unit is to be
selected for a certain task. Both methods have their advantages,
and the properties of scheduling problems determining which
branching is more efficient to apply have been identified. The
most simple bound that can be considered is the longest path of a
partial schedule. Although it is easy to compute, it can provide
considerably sharp bounds in many cases.
Additional Applications of S-Graphs. The previously de-

scribed algorithm minimizes the makespan for a certain demand.
Majozi Friedler29 has introduced a new concept to apply S-graphs for
throughput maximization. Laínez et al.30 has adapted this concept to
develop a new algorithm for maximizing the expected profit for
stochastic scheduling problems with uncertain demand and price.
Romero et al.31 have extended the original method to address

batch scheduling problems with FIS policy that often appears in

Figure 3. Schedule represented by an S-graph and the corresponding
Gantt-chart.

Figure 4. An other schedule represented by the corresponding S-graph
and Gantt-chart.

Figure 5. S-graph for the optimal schedule and the corresponding
Gantt-chart.
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the industry. Adonyi et al.32 have developed an S-graph based
algorithm addressing scheduling problems with cleaning costs
and cleaning times that is common in paint production facilities.
Adonyi et al.33 have extended the original approach to take into
account streams with various temperatures. In their approach,
utility cost can be minimized for a given time horizon or the
makespan can be minimized with an upper bound on the utility
cost. Romero et al.34 introduced a methodology based on the
S-graph framework to provide optimal schedule by exploiting the
inner flexibility of the batch process at the plant level.
A critical modeling issue has been recognized by Ferrer-Nadal

et al.35 and Hegyh�ati et al.36 in the literature, which made MILP
models result in infeasible solutions. The infeasibility arised as a
situation, where a set of units must exchange their materials
without available storage. It has been shown36 that the combi-
natorial meaning of this infeasibility is a zero-weighted cycle in
the ordering of tasks, which can be detected by a cycle search as
any other infeasibility when applying the S-graph framework. In
Figure 6, an infeasible schedule of the former example is given
with its Gantt-chart and S-graph, where the zero-weighted cycle
is highlighted. At 4 h of the time horizon, units E2 and E3 try to
exchange their materials, which is inapplicable in practice. This
issue highlights the advantage and importance of using straight-
forward combinatorial tools for the modeling and optimization
of the scheduling of batch processes.

’AUTOMATA AND PETRI NETS FOR SCHEDULING

Finite automata and Petri nets are widely applied in the
analysis of discrete event systems.37 These mathematical models
can be especially useful to explore the reachable set of states of
the system to find deadlocks and other potential undesired
behaviors of a system. Several extensions exist to address timing
in these models.

Timed automaton were introduced by Alur and Dill38 ex-
tended to Priced Timed Automaton (PTA) by Behrmann et al.39

On the basis of PTA and the zone abstraction technique, the
formulation of multiproduct batch scheduling problems was
given by Panek et al.12 Ghaeli et al.11 proposed a modeling of
batch scheduling problems based on Timed Place Petri nets.
Both approaches apply branch-and-bound algorithms to explore
the set of reachable states and find the goal state with the
smallest value.

The Petri net representation of the problem given in Figure 1
is shown in Figure 7. In this Petri net, a place corresponds to the
execution of a task in a unit. Moreover, a place is defined for each
product and equipment unit. Transitions refer to the starting or
ending of a task in a particular unit. For the sake of visibility, the
arcs connected to the places representing units E2 and E3 are not
shown in the figure and only the arcs related to equipment unit
E1 are given. Note, that automata and Petri net based approaches
also avoid cross transfer, which appears in these models as a
deadlock.

’COMPUTATIONAL COMPARISON

To illustrate the expediency of combinatorial algorithms in
batch process scheduling, an exhaustive comparison has been
made for a multiproduct scheduling problem,40 where 4 pro-
ducts, A, B, C, and D are to be produced in three consecutive
steps. The recipe with the five available equipment units
(U1�U5) and processing times is shown in Figure 8.

The objective is to minimize the makespan for the given
number of batches. In this study, 28 different cases were
examined: starting from 1 batch up to 7 batches from each

Figure 6. Infeasible schedule represented by an S-graph and its Gantt-
chart.

Figure 7. Petri net representation of the problem given in Figure 1.
(Note that the arcs connected to places E2 and E3 are not shown for the
sake of visibility.)
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product. Each case was solved by four different approaches: a
global time point based formulation by Maravelias and
Grossmann;41 a unit specific time point based formulation by
Shaik et al;42 a precedence based formulation by Mendez and
Cerda;43 and the S-graph based algorithm by Sanmarti et al.10

Each test was performed on the same computer with an AMD
ATHLON 1.8 GHz processor and 1.5 GB of memory. For the
S-graph based approach, a recent implementation by Smidla and
Heckl44 was applied. The MILP models were solved by CPLEX
version 11.1.1. The time limit for the optimization was 1000CPU
seconds if an approach failed to finish in this time limit and the
current best solution was reported. In the case of time point

based formulations, the iteration on time points was performed
until the second occurrence of the same objective value. For the
three-index formulation, theΔn parameter was considered to be 0.

The results of the comparison are given in Table 1. The
S-graph based solver and the precedence based formulation
could provide the best results. The more general time point
based formulations reached the 1000 s limit at much smaller
batch numbers.

’CONCLUDING REMARKS

The combinatorial nature of batch process scheduling has
been investigated. Problem representation and modeling that fits
the scheduling is crucial both in guaranteeing the optimal
solution and reducing the computational effort. S-graph frame-
work initiated by Puigjaner and Friedler proved to be appropriate
for problem representation and for involving combinatorial
algorithms in the solution procedure. Several additional combi-
natorial algorithms have been presented here as an illustration.

Because of the industrial requirements, scheduling problems
are getting more and more complicated; therefore, the efficacy of
the solution procedures is crucial. The present work illustrated
that combinatorial algorithms and tools play important role in
adequate modeling and in the effective solution of batch schedul-
ing problems. Combinatorial algorithms can further be exploited
to solve industrial problems with additional requirements, e.g.,
simultaneous heat integration and scheduling. It is assumed that
S-graph framework provides an appropriate base for that.Figure 8. Recipe of the example for the comparison study.

Table 1. Comparison Results for the Example

no. of batches S-graph (2002)10 M&G (2003)41 M&C (2003)43 S&F (2009)42

A B C D Obj. CPU time Obj. CPU time Obj. CPU time Obj. CPU time

1 1 1 1 25 h 0 s 25 h 26 s 25 h 0 s 25 h 1 s

2 1 1 1 31 h 0 s 31 h 73 s 31 h 0 s 31 h 2 s

2 2 1 1 37 h 0 s 37 h 318 s 37 h 0 s 37 h 2 s

2 2 2 1 39 h 0 s e39 h 1000 s 39 h 0 s 39 h 11 s

2 2 2 2 41 h 0 s e41 h 1000 s 41 h 0 s 41 h 29 s

3 2 2 2 46 h 0 s e54 h 1000 s 46 h 0 s 47 h 99 s

3 3 2 2 52 h 0 s e54 h 1000 s 52 h 0 s 52 h 88 s

3 3 3 2 55 h 0 s e57 h 1000 s 55 h 0 s 55 h 788 s

3 3 3 3 57 h 1 s e60 h 1000 s 57 h 0 s e57 h 1000 s

4 3 3 3 62 h 1 s e69 h 1000 s 62 h 1 s e63 h 1000 s

4 4 3 3 67 h 1 s e76 h 1000 s 67 h 1 s e68 h 1000 s

4 4 4 3 71 h 2 s e77 h 1000 s 71 h 3 s e72 h 1000 s

4 4 4 4 73 h 8 s e81 h 1000 s 73 h 8 s e74 h 1000 s

5 4 4 4 78 h 6 s e88 h 1000 s 78 h 8 s e79 h 1000 s

5 5 4 4 82 h 4 s e93 h 1000 s 82 h 6 s e85 h 1000 s

5 5 5 4 87 h 35 s e103 h 1000 s 87 h 13 s e89 h 1000 s

5 5 5 5 89 h 138 s e102 h 1000 s 89 h 96 s e92 h 1000 s

6 5 5 5 94 h 96 s e102 h 1000 s 94 h 25 s e98 h 1000 s

6 6 5 5 98 h 63 s e121 h 1000 s 98 h 30 s e02 h 1000 s

6 6 6 5 103 h 580 s e126 h 1000 s 103 h 336 s e11 h 1000 s

6 6 6 6 e105 h 1000 s e125 h 1000 s 105 h 921 s e15 h 1000 s

7 6 6 6 e110 h 1000 s e137 h 1000 s 110 h 306 s e12 h 1000 s

7 7 6 6 e114 h 1000 s e140 h 1000 s 113 h 600 s e21 h 1000 s

7 7 7 6 e119 h 1000 s e146 h 1000 s e119 h 1000 s e24 h 1000 s

7 7 7 7 e123 h 1000 s e146 h 1000 s e121 h 1000 s e28 h 1000 s
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