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Abstract A reaction-pathway identification procedure has two distinct phases. The
first phase enumerates exhaustively the feasible candidate pathways, and the second
phase identifies the ultimate feasible pathway or pathways among them. Probably the
most efficient way to execute the first phase is to algorithmically generate the net-
works of feasible candidate pathways from a predefined set of plausible elementary
reactions. The available algorithmic methods for this purpose can be roughly grouped
into two major classes, one based on graph theory and the other on linear algebra. Both
classes of methods consider any chemical reaction system as a network of elementary
reactions, thereby implying that the two classes are interrelated. This paper studies
the linear algebraic concept termed direct mechanism introduced in the mid-eighties
and the graph-theoretical concept termed structurally minimal pathway introduced two
decades later. Herein, it has been formally proven that the two concepts are equivalent.
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1 Introduction

Reaction-pathway identification plays a key role in exploring the kinetics of catalytic
reactions. For example, it is essential for understanding the effects of external condi-
tions on the rates of catalytic reactions. Such understanding can be a basis for various
applications, especially for designing novel industrial chemical processes. Two dis-
tinct phases exist in the procedure for identifying or determining a reaction pathway.
In the first phase, all the feasible candidate pathways are enumerated, while in the sec-
ond phase, the ultimate feasible pathway or pathways are identified among them. The
most effective way to accomplish the first phase is probably through the algorithmic
generation of networks of feasible candidate pathways from a given set of plausible
elementary reactions for which several methods have been proposed.

The above mentioned methods can be roughly grouped into two classes; one is
based on graph theory (see, e.g., [1,2]) and the other, on linear algebra (see, e.g.,
[5,8]). While these classes of methods differ in nature, either class considers a chem-
ical reaction system as a network comprising elementary chemical reactions linked to
one another through shared reactants, thereby implying that they might be related to
each other. The present work proves that the concept of direct mechanisms resulting
from the method rooted in linear algebra and that of structurally minimal pathways
resulting from the method rooted in graph theory are identical. For clarification, both
methods are illustrated with a specific chemical reaction system, namely catalytic
ammonia synthesis; see the “Appendix”.

2 Direct mechanisms

Introduced herein is the linear algebraic method developed by Happel and Sellers [5].
A mathematical discourse of the method entails the formal definition of the chemical
reaction system under consideration. Happel and Sellers [5] have defined two vector
spaces, an S-dimensional space of chemical reaction mechanisms and a Q-dimen-
sional space of chemical reactions. These two vector spaces are related to each other
since each mechanism m gives rise to a unique reaction R(m), wherein R is a function
transforming the mechanism into the reaction. R is linear: the reactions in a chemical
reaction system are additive, and thus, the reaction associated with combined mech-
anisms m1 +m2 is R(m1) + R(m2). The simplest kind of mechanism consists of a
one-step molecular interaction and is termed a step. Any mechanism is a combination
of such steps. Each of the steps produces one of the elementary reactions forming a
basis for the space of all reactions involved in the chemical reaction system.

The formalization presented in [5] is as follows: Denote the species contained in
the chemical reaction system by a1, a2, . . . , aA and the elementary reactions among
these species by the S vectors as given below:

r1 = γ11a1 + γ12a2 + · · · + γ1AaA

r2 = γ21a1 + γ22a2 + · · · + γ2AaA
...

...
...

rS = γS1a1 + γS2a2 + · · · + γS AaA

(1)
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where the γ ’s are stoichiometric coefficients. Presumably, each elementary reaction
has at least one positive coefficient as well as at least one negative coefficient, and
every reaction is reversible.

The elementary reactions in Eq. (1) may be linearly dependent. The maximum num-
ber of linearly independent reaction vectors in a linearly independent subset is denoted
by Q. This subset provides a basis for a Q-dimensional vector space, termed the reac-
tion space. Furthermore, the molecular interaction yielding reaction ri is denoted by
step si . Let mechanism m be any linear combination of steps in the form

m = σ1s1 + σ2s2 + · · · + σSsS (2)

where the coefficients, σi , are real numbers signifying the rate of occurence of si .
The S-dimensional vector space comprising the set of all such mechanisms is called
the mechanism space. The reaction, r, corresponding to the mechanism, m, can be
obtained by applying the linear function, R, to the above equation, thereby resulting
in

r = σ1r1 + σ2r2 + · · · + σsrs (3)

The equations of Eq. (1) can be substituted into this expression, thereby rendering it
possible to express it by the following explicit linear combination:

r = R(m) =
(

S∑
i=1

σiγi1

)
a1 +

(
S∑

i=1

σiγi2

)
a2 + · · · +

(
S∑

i=1

σiγi A

)
aA (4)

The matrix form of this equation where the stoichiometric coefficients of all the ele-
mentary reactions are given by a single matrix is as follows:

r = R(m) = (σ1, σ2, . . . , σS)T

⎛
⎜⎜⎜⎝

γ11 γ12 . . . γ1A

γ21 γ22 . . . γ2A
...

...
. . .

...

γS1 . . . . . . γS A

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

a1
a2
...

aA

⎞
⎟⎟⎟⎠ (5)

Species in a chemical reaction system can be grouped into two classes. One
comprises terminal species including starting reactants and final products. The other
comprises intermediates that do not belong to the terminal species. In a steady-state
mechanism, the concentrations of all intermediates are presumed to be constant, thus
implying that the net rate of production of every intermediate is zero.

The intermediate species are denoted by a1, a2, . . . , aI , and the terminal species,
by aI+1, aI+2, . . . , aI+T where I + T = A. Consequently, the first I coefficients in
the right-hand side of Eq. (4) are zero. Thus, Horiuti [6] has introduced a character-
ization for such a mechanism as one whose coefficients σ1, σ2, . . . , σS satisfy the I
linear equations expressed as
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(σ1, σ2, . . . , σS)

⎛
⎜⎝

γ11 . . . γ1I
...

. . .
...

γS1 . . . γSI

⎞
⎟⎠ = (0, 0, . . . , 0) (6)

If the rank of the S × I matrix in the above equation is denoted by H , the dimen-
sion of the space of all steady-state mechanisms, P , is equal to (S − H ). The values
of S, H, and P and the relations among them can be determined by simply treating
them as dimensions of vector spaces and resorting to the concepts of basis and linear
independence of vectors. In linear algebra, a basis for a vector space is a sequence of
vectors that form a set, which is linearly independent and spans the space. Since the
dimension of a space is equal to the number of elements in a basis, every steady-state
mechanism can uniquely be expressed in terms of P steady-state mechanisms. While
this approach uniquely represents each steady-state mechanism, it does not provide
a valid classification from a chemical point of view since the choice of basis is arbi-
trary and is not dictated, in general, by any consideration of chemistry. There exists,
however, a unique collection of mechanisms in every chemical reaction system, called
direct mechanisms. Let m be a mechanism and r be the reaction, which it produces.
Mechanism m is defined as direct if it is minimal in the sense that, if one step is
omitted, then no such a mechanism can be formed from any linear combination of the
remaining steps leading to r.

In every chemical reaction system, there exists at least one such set of direct mech-
anisms providing a basis for the vector space of all mechanisms of the given system.
Usually, a proper subset of all direct mechanisms is sufficient to span the space of all
potential mechanisms, i.e., there are more direct mechanisms than basis elements for
a given system. While this implies that linear dependence relations can exist among
the direct mechanisms, they differ chemically. Moreover, a linear algebraic basis for a
system is ambigous while the set of direct mechanisms is a uniquely defined attribute
of the system.

If the direct mechanisms are linearly independent in the chemical reaction system
under consideration, a method of Happel and Sellers [5] is able to determine each of
them. This algorithm and a more detailed description of the method for determining
direct mechanisms are found in [5]. As mentioned previously, the method is illus-
trated with the catalytic synthesis of ammonia, the details of which are given in the
“Appendix”.

3 Structurally minimal pathways

An approach entirely different from the one presented in the preceding section is intro-
duced here for enumerating reaction mechanisms. Stoichiometrically exact candidate
pathways of a complex reaction can be determined through the synthesis of networks
of plausible steps constituting such pathways.

Process synthesis problems are ubiquitous in chemical and allied industries. Pro-
cess synthesis is of major interest due to its utmost practical importance; neverthe-
less, it is extremely difficult to execute. Process synthesis gives rise to a complex
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combinatorial optimization problem that is generally considered to be highly convo-
luted and computationally demanding.

Reaction-pathway identification can be defined as a class of process synthesis prob-
lems where each species consists of a finite number of chemical elements in a fixed
ratio, and these chemical elements are conserved throghout the process. The products
of an elementary reaction comprise exactly the same chemical elements as the starting
reactants, and the products of an overall reaction contain exactly the same components
as the starting reactants.

The reaction-pathway identification is defined by the quadruple (E, O, M, Q)

where Q = {q1, q2, . . . , qh} is the finite ordered set of the components of the spe-
cies; and M = {a1, a2, . . . , al}, the finite ordered set of species, each of which is
defined by an a j = (a1, j , a2, j , . . . , ah, j ) ∈ (R+0 )h vector of nonnegative numbers
with ak, j denoting the quantity of component qk in the species a j (k = 1, 2, . . . , h).
The overall reaction denoted by E is given by the l-dimension vector of real numbers,
E = (E1, E2, . . . , El) ∈ Rl , where E j signifies the difference of the production and
consumption rates of the species a j ( j = 1, 2, . . . , l) by the overall reaction. Species
a j is a starting reactant of the overall reaction if and only if E j < 0, and it is a final
product of the overall reaction if and only if E j > 0. Finally, O = {e1, e2, . . . , en} is
the finite ordered set of elementary reactions where every reaction ei is represented
by an l-dimensional vector of real numbers, ei = (e1,i , e2,i , . . . , el,i ) ∈ Rl , where
e j,i indicates the difference of the rates of consumption and production of the species,
a j ( j = 1, 2, . . . , l), by elementary reaction i . Presumably,

Q ∩ M = M ∩ O = O ∩ Q = ∅ and E �∈ Q ∪ M ∪ O (7)

The discourse in the preceding paragraph implies that the combinatorial nature of
reaction-pathway identification makes it difficult to execute. In constituting a mech-
anism or network directed from the starting reactants towards the final products or
vice versa, each step contributes the forward, reverse or no step to the network. For
example, a network comprising only ten steps results in (310 − 1) = 59048 possible
combinations.

Every feasible process has common combinatorial properties that can be exploited
in process synthesis. As such, Friedler et al. [3,4] have proposed a method that is capa-
ble of solving realistic and exceedingly complex industrial process synthesis problems.
The method has been adapted Fan et al. [1] for reaction-pathway identification.

To exploit the combinatorial properties of any feasible network, it is necessary to
represent the structure of the network unambigously. The elementary reactions per-
formed by the steps are directed, and therefore, every network representing a reaction
pathway, including these reactions, can be represented by directed graphs. For this
purpose, Fan et al. [1] have proposed to adapt a unique directed bipartite graph, spe-
cifically the P-graph, for reaction-pathway identification.

In the graphical representation of a P-graph, elementary reactions are depicted by
horizontal bars while chemical and active species by circles. If a chemical species is a
reactant to an elementary reaction, the vertex representing the species is linked to the
vertex representing the elementary reaction by an arc. Similarly, if a chemical species
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is a product from an elementary reaction, then the vertex representing the elementary
reaction is linked by an arc to the vertex representing the species.

The set of chemical or active species is denoted by m ⊆ M ; and the set of elementary
reactions under consideration, by o ⊆ O , where

m = {a j ∈ (R+0 )h : j = 1, 2, . . . , l ′} l ′ ≤ l (8)

and

o = {ei ∈ Rl : i = 1, 2, . . . , n′} n′ ≤ n (9)

An (m, o) P-graph representing a reaction network can be defined formally as follows:
The set of vertices is m ∪ o, and the set of arcs is A1 ∪ A2, where

A1 = {(a j , ei ) : a j ∈ m, ei ∈ o, e j,i < 0} (10)

and

A2 = {(ei , a j ) : ei ∈ o, a j ∈ m, e j,i > 0} (11)

An (m′, o′) P-graph is a subgraph of the (m′′, o′′) P-graph, i.e., (m′, o′) ⊆ (m′′, o′′),
if m′ ⊆ m′′ and o′ ⊆ o′′. The union of P-graphs (m′, o′) and (m′′, o′′) is defined to be
the P-graph (m′ ∪ m′′, o′ ∪ o′′).

The reaction pathway leading from the starting reactants to the final products of
the overall reaction of interest is combinatorially feasible, if it satisfies the following
axioms [1]:

(T1) Every final product is represented in the network.
(T2) Every starting reactant is represented in the network.
(T3) Each reaction step represented in the network is defined a priori.
(T4) Every active species represented in the network has at least one path leading to

the final product of the overall reaction.
(T5) Every chemical or active species represented in the network must be a reactant

for or a product from at least one reaction step represented in the network.
(T6) A reactant of any elementary reaction represented in the reaction network is a

starting reactant, if it is not produced by any reaction step represented in the
network.

(T7) The network includes at most either the forward or the reverse step of each
elementary reaction represented in the network.

Based on the above axioms, a set of algorithms has been crafted focusing on the
combinatorial properties of feasible reaction networks. Algorithm RPIMSG, which is
a slight adaptation of algorithm MSG, generates the maximal structure of the reac-
tion network of interest in polynomial time. The importance of the maximal structure,
which is a mathematically rigorous superstructure, has been thoroughly explored and
is well-understood [7]. The maximal structure of reaction networks gives rise to algo-
rithm RPISSG, which is the adaptation of algorithm SSG.
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Not every combinatorially feasible structure constitutes a feasible pathway. A fea-
sible pathway is a pathway satisfying the following six axioms;

(R1) Every final product is totally produced by the reaction steps represented in the
pathway.

(R2) Every starting reactant is totally consumed by the reaction steps represented in
the pathway.

(R3) Every active intermediate produced by any reaction step represented in the
pathway is totally consumed by one or more reaction steps in the pathway,
and every active intermediate consumed by any reaction step represented in the
pathway is totally produced by one or more reaction steps in the pathway,

(R4) All reaction steps represented in the pathway are defined a priori.
(R5) The network representing the pathway is acyclic.
(R6) At least one elementary-reaction step represented in the pathway activates a

starting reactant.

It can be seen from these axioms that feasible pathways must satisfy stronger con-
straints then combinatorially feasible pathways. This is obvious, since axioms (T1)
through (T7) are obtained by relaxing the conditions imposed by axioms (R1) through
(R6). Consequently, every feasible pathway is a combinatorially feasible pathway,
while the converse is not necessarily true. The complete set of feasible pathways of a
given problem can be generated with a branch-and-bound-like algorithm termed PBT.

A P-graph is termed a structurally minimal pathway or “independent pathway” [1]
if it represents a feasible pathway and none of its proper subgraphs can represent a
feasible pathway. For a more exact definition of structurally minimal pathways it is
necessary to formalize axioms (R1) through (R6) mathematically.

The problem definiton implies that a set o of elementary reactions satisfies axi-
oms (R1) through (R3) if and only if there exists a positive coefficient λi for each
elementary reaction ri ∈ o such that

∃λ = (λ1, λ2, . . . , λn) :
∑
ri∈o

λi ri = E, ri ∈ o⇐⇒ λi > 0 (12)

The above equation implies that the system must be at steady state according to axioms
(R1) through (R3). Axiom (R4) can be formulated as

o ⊆ O (13)

and finally, axiom (R5) can be formulated as

� ∃o′ : o′ ⊆ o, o′ �= ∅, ∃λ′ = (λ′1, λ′2, . . . , λ′n) :
∑
ri∈o

riλ
′
i = 0, ri ∈ o′ ⇐⇒ λ′i > 0

(14)

From a mathematical point of view, an (m, o) P-graph is termed structurally mini-
mal pathway, if it satisfies the following statement: there exist such positive coefficients

123



1354 J Math Chem (2012) 50:1347–1361

for the reaction steps included in o, that the overall reaction can be written as a lin-
ear combination of the elements of o with the given coefficients. Moreover (m, o) is
minimal in the sense that it has no proper subgraphs satisfying this criteria. Algorithm
PBT is capable of finding every structurally minimal pathway of a given reaction [1].

As mentioned in the introductory section, the method based on P-graphs yielding
the stoichiometrically exact candidate feasible pathways is also illustrated with the
catalytic ammonia synthesis; see the “Appendix” for details.

4 Proof of the equivalence

This section presents the equivalence of the term, “direct mechanisms”, introduced
by Happel and Sellers [5] and the term, “structurally minimal”, i.e “independent path-
ways”, introduced by Fan et al. [1]. First, it is shown that the overall reaction produced
by a direct mechanism can be expressed by exactly one linear combination of the
elementary reactions produced by the steps constituting the direct mechanism.

Theorem 1 Let m be a direct mechanism yielding the overall reaction E. Then, the
overall reaction can be expressed by exactly one linear combination of the elementary
reaction vectors, r1, r2, . . . , rn, generated by the steps s1, s2, . . . , sn constituting the
direct mechanism, m.

Proof Let m be a direct mechanism yielding overall reaction E. Let s1, s2, . . . , sn be
the steps constituting the direct mechanism, m, and let r1, r2, . . . , rn be elementary
reactions generated by the steps, s1, s2, . . . , sn . Then, E can be expressed as a linear
combination of r1, r2, . . . , rn with coefficients λ1, λ2, . . . , λn :

λ1r1 + λ2r2 + · · · + λnrn = E (15)

Suppose that the overall reaction can be written as another linear combination of
these vectors with coefficients λ∗1, λ∗2, . . . , λ∗n , as

λ∗1r1 + λ∗2r2 + · · · + λ∗nrn = E (16)

and that there exists at least one such index k for which λk differs from λ∗k , say

∃k, λk − λ∗k �= 0 (17)

For i = 1, 2, . . . , n, let εi denote the difference, λi −λ∗i . Then, the linear combination
of the elementary reaction vectors, r1, r2, . . . , rn , with coefficients ε1, ε2, . . . , εn is
the null vector, i.e.,

ε1r1 + ε2r2 + · · · + εnrn = E− E = 0 (18)

This implies that the elementary reaction vectors are not linearly independent. Hence,
one of the elementary reactions, r1, r2, . . . , rn , can be expressed as a linear combi-
nation of the others. For example, for rk where λk differs from λ∗k (and thus εk is
nonzero):
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εkrk = −
n∑

i=1
i �=k

εi ri (19)

The above expression signifies that mechanism m is not a direct mechanism: The
overall reaction E could be expressed as a linear combination of the reaction vectors
r1, r2, . . . , rk−1, rk+1, . . . , rn omitting reaction rk as follows:

λ1r1 + λ2r2 + · · · − λk

εk

n∑
i=1
i �=k

εi ri + · · · + λnrn = E (20)

This contradiction proves the theorem. ��
Corollary 1 To define a direct mechanism, it is sufficient to define the set of elementary
reactions constituting the direct mechanism.

This corollary implies that it is unnecessary to define the coefficients for the ele-
mentary reactions to uniquely define a direct mechanism; it is sufficient to define the
set of elementary reactions constituting the direct mechanism. It is significant that
Corollary 1 provides the link between the methodology of Happel and Sellers [5] and
the methodology of Fan et al. [1]. Combining this result with Theorem 2 presented
below will prove that the direct mechanisms and the structurally minimal pathways of
a chemical system are identical.

Theorem 2 There is no proper subset of elementary reactions forming a structurally
minimal pathway that can constitute a direct mechanism.

Proof Suppose that for a vector r a given set of vectors {r1, r2, . . . , rk, rk+1, . . . , rn}
is minimal in the sense that the vector, r, cannot be written as a linear combination
of vectors of any proper subset of {r1, r2, . . . , rk, rk+1, . . . , rn} with positive coeffi-
cients, i.e.,

r =
n∑

i=1

λi ri , ∀λi > 0 (21)

r is minimal in the sense that there is no proper subset of {r1, r2, . . . , rk, rk+1, . . . , rn}
satisfying Eq. (14). Now suppose that by relaxing the positivity constraint and enabling
negative coefficients, r can be written as a linear combination of the vectors in
{r1, r2, . . . , rk}, namely

r =
k∑

i=1

λ∗i ri where k < n (22)

Let δ be

δ = min
λ∗i <0

{
λi

|λ∗i |
}

(23)
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This δ is positive: since if λi ≥ 0, then

λi

|λ∗i |
≥ 0 (24)

Multiplying both sides of Eq. (22) by δ gives

δr =
k∑

i=1

δλ∗i ri (25)

The sum of Eqs. (21) and (25) yields

r(1+ δ) =
k∑

i=1

(λi + δλ∗i )ri +
n∑

i=k+1

λi ri (26)

In light of the definition of δ, in the first sum, where the minimum is attained, one of
the coefficients (λi + δλ∗i ) will be zero. By denoting the index of this coefficient by
j , we have

δ = λ j

|λ∗j |
and λ j + λ j

|λ∗j |
λ∗j = 0 (27)

The other coefficients will be nonnegative: it is trivial that

λi + λ j

|λ∗j |
λ∗i ≥ 0 where λ∗i ≥ 0 (28)

and

λi + λi

|λ∗i |
λ∗i = 0 where λ∗i < 0 (29)

Since δ is defined where the minimum is attained, clearly

0 < δ = λ j

|λ∗j |
≤ λi

|λ∗i |
∀i, i �= j (30)

thereby yielding

λi + λ j

|λ∗j |
λ∗i ≥ 0 ∀i, i �= j (31)

Thus, the vector, r, can be written as a linear combination of the vectors of this proper
subset with positive coefficients; moreover, by dividing both sides with (1 + δ), a
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proper subset of the set, {r1, r2, . . . , rk, rk+1, . . . , rn}, is obtained. They are given
below.

r(1+ δ) =
k∑

i=1
i �= j

(λi + δλ∗i )ri +
n∑

i=k+1

λi ri (32)

r =
∑k

i=1
i �= j

(λ+ δλ∗i )ri +∑n
i=k+1 λi ri

1+ δ
(33)

This contradicts that {r1, r2, . . . rn} is structurally minimal and proves the following
theorem. ��

Theorem 3 Given a chemical system at steady state, the set of direct mechanisms and
the set of structurally minimal pathways of the system are equivalent.

Proof This theorem follows directly from Corollary1 and Theorem2. ��

5 Concluding remarks

The equivalence of direct mechanisms and structurally minimal pathways have been
formally defined. Furthermore, it is mathematically proven.

Acknowledgments Authors acknowledge the support of the Hungarian Research Fund under project
OTKA 81493K.

A Appendix

This appendix illustrates the methodologies referred in the text of the article, namely
those by Happel and Sellers [5] and Fan et al. [1]. The exhaustively studied ammonia
synthesis reaction serves the example for the illustration. The overall reaction produces
ammonia from hydrogen and nitrogen, i.e.,

N2 + 3H2 � 2N H3 (A1)

Table 1 lists the set of eleven plausible elementary reactions as defined by Happel and
Sellers [5] and with more detailed steps by Fan et al. [2].

Tables 2 and 3 list the species and steps involved, respectively, as denoted by Happel
and Sellers [5]. What follows represents the stoichiometric coefficients listed in Table 3
by matrix γ .
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Table 1 List of candidate
elementary reactions

(1) H2 + � � H2�

(2) H2�+ � � H�+ H�

(3) N2 + � � N2�

(4) N2�+ � � N�+ N�

(5) N2�+ H2� � N2 H2�+ �

(6) N2 H2�+ � � N H�+ N H�

(7) N�+ H� � N H�+ N�

(8) N H�+ H� � N H2�+ �

(9) N H�+ H2� � N H3�+ �

(10) N H2�+ H� � N H3�+ �

(11) N H3� � N H3 + �

Table 2 List of the identifiers of the species

Species H2 � H2� H� N2 N2� N� N2 H2� N H� N H2� N H3� N H3
Notation a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12

Table 3 Table of stoichiometric coefficients γi j ’s defining the steps

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12

s1 −1 −1 1

s2 −1 2

s3 −1 −1 1

s4 −1 −1 2

s5 1 −1 −1 1

s6 −1 −1 2

s7 1 −1 −1 1

s8 1 −1 −1 1

s9 1 −1 −1 1

s10 1 −1 −1 1

s11 1 −1 1

γ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 −1 1 0 0 0 0 0 0 0 0 0
0 0 −1 2 0 0 0 0 0 0 0 0
0 −1 0 0 −1 1 0 0 0 0 0 0
0 −1 0 0 0 −1 2 0 0 0 0 0
0 1 −1 0 0 −1 0 1 0 0 0 0
0 −1 0 0 0 0 0 −1 2 0 0 0
0 1 0 −1 0 0 −1 0 1 0 0 0
0 1 0 −1 0 0 0 0 −1 1 0 0
0 1 −1 0 0 0 0 0 −1 0 0 0
0 1 0 0 0 0 0 0 0 0 −1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(A2)

123



J Math Chem (2012) 50:1347–1361 1359

Table 4 List of direct mechanisms given by steps and corresponding γ coefficients

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11

m1 3 1 1 1 2 2 2

m2 3 3 1 1 2 2 2 2

m3 3 1 1 2 1 3 1 3

m4 3 1 1 1 2 2

m5 3 2 1 1 1 2 2 2

m6 3 1 2 3 3 4 2 2 2

Table 4 enumerates the direct mechanisms of the system given by the lists of steps
involved and the corresponding coefficients. The matrix of these coefficients is denoted
by σ as follows:

σ =

⎛
⎜⎜⎜⎜⎜⎜⎝

3 1 1 1 0 0 2 0 2 0 2
3 3 1 1 0 0 2 2 0 2 2
3 0 1 1 0 0 2 1 3 1 3
3 0 1 0 1 1 0 0 2 0 2
3 2 1 1 1 1 0 2 0 2 2
3 0 1 2 3 3 4 2 0 2 2

⎞
⎟⎟⎟⎟⎟⎟⎠

(A3)

By resorting to the methodology of Fan et al. [1], two chemical elements and an
active site are identified in the system. Set Q given below containes these two elements
and the notation of the active site �;

Q = {q1, q2, q3} = {Ṅ , Ḣ , �̇} (A4)

Set M given below includes the twelve species;

M = {a1, a2, . . . , a12} (A5)

In an equivalent yet more detailed formulation, the species are represented in vecto-
rial form where the components of the vectors denote the quantities of the chemical
elements in the species; as expressed below.

M = {[0, 2, 0]T , [0, 0, 1]T , . . . , [1, 3, 0]T } (A6)

Finally, the set of species can be given by simply listing the species contained in the
chemical reaction system by omitting the notations a1, a2, . . . , a12, as follows:

M = {H2, �, . . . , N H3} (A7)

The following equation shows how the set of elementary reactions are given in the
terminology introduced by Fan et al. [1]. Note that unlike in the case of steps, it is
necessary to define the elementary reactions in both directions;
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O = {e1→, e2→, . . . , e11→, e1←, e2←, . . . , e11←} (A8)

A detailed form of this expression is given below where each elementary reaction step
is expressed by the vector of its stoichiometric coefficients.

O = {e1→ = [−1,−1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]T ,

e2→ = [0, 0,−1, 2, 0, 0, 0, 0, 0, 0, 0, 0]T ,

. . .

e11→ = [0, 1, 0, 0, 0, 0, 0, 0, 0, 0,−1, 1]T ,

e1← = [1, 1,−1, 0, 0, 0, 0, 0, 0, 0, 0, 0]T ,

e2← = [0, 0, 1,−2, 0, 0, 0, 0, 0, 0, 0, 0]T ,

. . .

e11← = [0,−1, 0, 0, 0, 0, 0, 0, 0, 0, 1,−1]T }

(A9)

Similarly, the following equation shows the vector representing the overall reaction;

E = [−3, 0, 0, 0,−2, 0, 0, 0, 0, 0, 0, 0, 2]T (A10)

Finally listed below is the set V of structurally minimal pathways (m1, o1), (m2, o2),

. . . , (m6, o6).

V = {(m1 = N2, H2, N H3, �, H2�, H�, N2�, N�, N H�, N H3�,

o1 = {e1→, e2→, e3→, e4→, e7→, e9→, e11→}),
(m2 = N2, H2, N H3, �, H2�, H�, N2�, N�, N H�, N H2�, N H3�,

o2 = {e1→, e2→, e3→, e4→, e7→, e8→e10→, e11→}),
(m3 = N2, H2, N H3, �, H2�, N2�, N2 H2�, N H�, N H3�,

o3 = {e1→, e3→, e4→, e7→, e8→, e9→, e10→, e11→}, (A11)

(m4 = N2, H2, N H3, �, H2�, N2�, N2 H2�, N H�, N H3�,

o4 = {e1→, e3→, e5→, e6→, e9→, e11→}),
(m5 = N2, H2, N H3, �, H2�, H�, N2�, N2 H2�, N H�, N H2�, N H3�,

o5 = {e1→, e2→, e3→, e5→, e6→, e8→, e10→e11→}),
(m6 = N2, H2, N H3, �, H2�, H�, N2�, N�, N2 H2�, N H�, N H2�, N H3�,

o6 = {e1→, e3→, e4→, e5→, e6→, e7→, e8→, e10→, e11→})}

Note that as expected, the number of structurally minimal pathways is the same as the
number of direct mechanisms.
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