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The production scheduling of multipurpose batch plants is considered. A no®el graph
representation that looks at the specific characteristics of production scheduling in
chemical processes is proposed. In these graphs, the nodes represent the production
tasks, the arcs of the precedence relationships among them. The representation is flexi-
ble enough to consider a wide ®ariety of production structures, including complex recipes.

( ) ( )Both nonintermediate storage NIS and unlimited intermediate storage UIS transfer
policies can be considered simply by choosing the appropriate precedence relationships.
This representation pro®ides the opportunity of incorporating highly efficient graph algo-
rithms together with an appropriate branch-and-bound algorithm for sol®ing multipur-
pose scheduling problems. The efficiency of the proposed method is established by sol®-
ing examples and a complex case study.

Introduction
Multipurpose batch plants are characterized by their flexi-

bility and ability to produce a large number of different prod-
ucts in different qualities so as to satisfy the client’s demand,
and by the possibility of considering alternate production
paths for the same product in order to reduce costs. This
high degree of flexibility is one of the major sources of the
complexity of scheduling problems. In practice, a large num-

Žber of variables have to be introduced e.g., for tasks to
equipment assignments, products, andror task sequencing and

.task timing to describe the problem appropriately in a math-
ematical programming model that is difficult or frequently
impossible to solve by available general-purpose solvers. Sim-
plifying assumptions such as reducing the search space to

Ž .permutation schedules see, for example, Reklaitis, 1981 , in
which complete batches are sequenced instead of tasks, may
result in valuable solutions; nevertheless, optimality cannot
be guaranteed in most cases.

Short-term scheduling of chemical multipurpose batch
plants has similarities with the general job-shop problem,
which has been widely treated in operations research. The
approach traditionally used is based on a graph representa-

Correspondence concerning this article should be addressed to L. Puigjaner.

tion of the scheduling problem combined with a branch-and-
Ž . Žbound B&B algorithm see, e.g., Adams et al., 1988; Carlier

.and Pinson, 1989 . For the job-shop scheduling problem, B&B
algorithms are usually coupled with specific heuristics that
greatly accelerate the convergence with the optimal or near-
optimal solutions. The scheduling of chemical batch plants,
however, substantially differs from the job-shop scheduling
problems. The former is usually more complex than the lat-
ter, since additional conditions have to be considered, for ex-
ample, the storage of intermediate liquid materials that do
not occur in the discrete mechanical manufacturing industry.
Another key difference is the presence of unstable intermedi-
ate products that may require immediate transfer. These dif-
ferences prevent the direct adoption of the graph representa-
tion and algorithms developed for job-shop scheduling to
batch chemical processes. Thus, batch chemical systems are
usually scheduled by using other techniques, mainly mathe-

Žmatical programming see, for example, Voudouris and
Ž . Ž ..Grossmann 1994 and Sanmartı et al. 1996 , sequencing and´

Žscheduling via tailored heuristics or stochastic simulated an-
. Žnealing, genetic algorithms methods see, for example, Kudva

Ž . Ž . Ž .et al. 1994 , Graells et al. 1996 , Hasebe et al. 1996 , and
Ž ..Murakami et al. 1997 .
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The selection of the representation technique in solving any
complex problem like scheduling has major importance for

w Ž .several reasons see, for example, state-task network STN
representation by Kondili et al., 1993; resource-task network
Ž .RTN representation by Schilling and Pantelides, 1996; event

Ž .operation network EON representation by Graells et al.,
x1998 . A convenient representation may provide the opportu-

nity of exploiting the unique features of the problem, result-
ing in a procedure with a higher efficiency. Furthermore, if
the representation explicitly expresses the crucial points, it
may contribute to an understanding of the depth of the prob-
lem that may facilitate the development of new algorithms or
the improvement of available ones. The generality of the cho-
sen representation technique also determines the range of
problems that can be treated.

Kondili et al. used a discrete representation of time and
introduced the state-task network representation of the pro-
cess. The major advantage here is the ability to consider very
general-process recipes involving batch splitting and mixing,
material recycles, storage policies, resource constraints, and
so on. The formulation of Kondili et al. is based on the defi-
nition of binary variables that indicate whether tasks start in
specific pieces of equipment at the start of each time period.
However, the major problems with this approach are the large
size of the resultant mixed-integer linear programming
Ž .MILP model and mapping the discretization points with the
actual points in time when the events take place. This forms
the basis of several other pieces of research that are aimed at
taking advantage of the representational capabilities of the
formulation while improving its numerical performance.

Ž .Sahinidis et al. 1991 disaggregated the model in a way that
solution efficiency is improved despite the large nature of this

Ž .model. Shah et al. 1993 modified the allocation constraints
to generate the smallest possible integrality gap for this type

Ž .of formulation. In addition, Elkamel 1993 proposed a
heuristic decomposition method to solve separate scheduling
problems for parts of the overall scheduling problem. In a

Ž .later work, Yee and Shah 1997, 1998 considered the further
use of heuristics embedded in the formulation. Pantelides et

Ž .al. 1994 presented a critique of the STN and associated
scheduling formulations. They then proposed an alternative

Ž .representation, the resource-task network RTN , based on a
uniform description of all resources. Here tasks are assumed
to only consume and produce resources instead of materials.

As for continuous representation of time, Zhang and Sar-
Ž .gent 1994, 1996 , presented a continuous-time formulation

based on the RTN representation. They composed an MILNP
representation that was solved using the liberalization proce-

Ž .dure. Schilling and Pantelides 1996 proposed a hybrid B&B
solution procedure that works well in reduced scenarios. Pinto

Ž .and Grossmann 1995 used preordering constraints and a
decomposition scheme for large systems that minimize earli-

Ž .ness and eliminates unnecessary setups. Graells et al. 1998
presented the EON representation that simplifies the timing
subproblem. Together with the process-material network
Ž .PMN representation, the EON provides a realistic and ro-
bust framework for detailed process simulation at the
scheduling level.

A large portion of the most recent research in scheduling
relates to the development of mathematical models as the
best way of representing the complex interactions between

resource allocation, task timing, materials flows, and equip-
Žment capacities see, for example, recent reviews in this area

by Shah, 1998; Pekny and Reklaitis, 1998; Pinto and Gross-
.mann, 1998; Puigjaner, 1999 . In the present work, a new

graph representation appropriate for combinatorial algo-
rithms is introduced. The article describes a general frame-
work for solving different types of multipurpose batch
scheduling problems. Therefore, it provides a good basis for
effective algorithms to solve a large variety of scheduling
problems.

Problem Definition
Three types of information define a multipurpose batch-

scheduling problem; these are the recipes of each product,
tasks to equipment assignments, and the amount to be pro-
duced from each product.

A recipe is an entity that contains the minimum set of in-
formation that uniquely defines the manufacturing require-
ments for a specific product. The ISA SP88 standard defines
four levels for the types of recipes that are used in batch
processes, depending on the user requirements. These levels
are:

� General recipe identifies raw materials, their relative
quantities, and the required processing. It is considered as
enterprise-level information, and is therefore equipment in-
dependent. Besides it is not specific to a particular site.

� Site recipe is a combination of site-specific information
Ž .and the general recipe it is specific to a particular site .

� Master recipe includes information about required pro-
cess cell equipment, raw materials with corresponding quan-
tities, and the procedure for making the product. It can be
derived from a general recipe or a site recipe.

� Control recipe includes additional information about the
process units that are used in manufacturing a single batch of
a single product. This recipe is created from the master recipe
when a batch is scheduled for production.

Based on the four types of recipes, the master recipe is to
be considered for the scheduling of batch processes. This
master recipe can be conveniently represented as a directed
graph, where the nodes represent the production tasks and
the arcs the precedence relationships among them. Note that

Ž .the production time PT and the set of plausible equipment
Ž .units Eq. of a task are given at the corresponding node.

Figure 1 illustrates the conventional representations of the
recipe of a product composed by three reaction stages. Natu-

Figure 1. Conventional representations of a recipe
composed of three consecutive reaction
stages.
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Figure 2. Conventional representation of two master
recipes of three products.

rally, complex recipe structures can also be represented in
this way, as illustrated in Figure 2, where, for example, two
intermediates are produced, mixed, and further processed in
the production of A.

This conventional representation is similar to the flow-sheet
Ž Ž ..representation of continuous plants see Reklaitis 1991 , the

only role of the arcs being to express the order of tasks; all
other information is related to the nodes of the graph. For
combinatorial algorithms of scheduling, however, it is benefi-
cial to distribute information between nodes and arcs: pro-
cessing times are assigned to the arcs instead of nodes. Fig-
ure 3 shows the graph-representation of recipes given on Fig-
ure 2, where Si denotes the set of those equipment units that

Žcan perform the task represented by node i such as S1s
� 4. Ž1,2 ; in addition, an additional node the so-called product

.node is introduced for each product. In this representation,
the value assigned to an arc expresses the lower bound for
the difference between the starting times of the two related
tasks. The processing time of a task may be different for dif-
ferent equipment units. In this case, the weight of the arc is
the minimum of the processing times of the plausible equip-
ment units.

Formally, any recipe can be represented by an acyclic di-
rected graph. Note that recycling in the process flow sheet
does not result in a cycle in the graph of the recipe, since it is
realized as a feedforward to the production of the next batch
or some batch to be started later.

Graph Representations for Solving Scheduling
Problems

Scheduling of batch chemical plants has been traditionally
approached by tailored heuristics and mathematical pro-
gramming, either MILP or mixed-integer nonlinear program-

Ž .ming MINLP . The graph-theoretic approach has also been
used frequently in solving complex combinatorial problems,
including scheduling. These applications in scheduling, how-
ever, have been limited to the general job-shop-scheduling
problem of the mechanical industry where intermediates can
be stored between operations, that is, for an unlimited inter-

Ž .mediate storage UIS policy. In solving a chemical schedul-
ing problem, however, the liquid, and sometimes the unstable
nature of the intermediate products, has to be considered.
Unlike solids, liquid intermediates have to be stored in spe-
cific vessels that have to be available at each specific equip-
ment unit. Consequently, more sophisticated graph represen-
tation and algorithms are required in order to represent this

Figure 3. Graph representation of the two recipes in
Figure 2.

situation. Furthermore, liquid intermediates are frequently
unstable, and they have to be transferred immediately after
processing.

Graph representation for the unlimited intermediate storage
policy

Assume that the number of batches of each product to be
produced is already known and definite assignments of
equipment to tasks are given. Then, the sequence of the tasks

Žto be processed can be represented in a graph Adams et al.,
.1988 where the task sequence of all equipment units is de-

fined by a set of conjunctive arcs that connect the tasks as-
signed to the same equipment unit. These arcs have the same
weight as the processing time of the tasks that introduce a set
of precedence constraints in addition to the constraints im-
posed by the recipe. For example, 1�6�7 is the task sequence
of equipment unit E1 shown in Figure 4b for the scheduling
problem specified by the recipe on Figure 4a. In this exam-
ple, E1 is assigned to each of tasks 1, 6, and 7 where, E1gS1,
S6, S7. It can be observed in Figure 4b that task 6 is subject
to two precedence constraints: it cannot start before task 5 is

Ž .completed because of the recipe and before task 1 has fin-
Ž .ished because of the sequence .

This type of graph representation is useful in solving the
job-shop problems with the UIS policy; however, it may not

Ž .be appropriate for nonintermediate storage NIS cases. For
the former, it is assumed that an equipment unit is available
immediately after it processes a task, that is, the intermediate
product that has been generated in this task is removed from
the equipment unit and stored until the next task in the recipe
starts its processing. In most of the chemical batch processes,
however, the NIS transfer policy is to be followed instead of
the UIS policy.

S-graph for nonintermediate storage policy
In the NIS case, an equipment unit is not free after pro-

cessing a task until the material stored in it has been trans-
ferred to the equipment unit assigned to the next task in the
recipe. Arc or arcs express these additional constraints im-
posed by the NIS policy. Let � denote the set of tasks thatj
follow task j according to the recipe. If equipment unit Ei is
assigned to task j after completion of task k, then a zero-
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Figure 4. Task sequence for equipment unit E1 included in sets of equipment units S1, S6, and S7: appropriate only
for UIS transfer rule.

Žweighted arc or an arc whose weight is equal to the length of
.the changeover time if applicable is established from each

element of � to k. This method of representation is calledj
S-graph. The task sequence of equipment E1 given in Figure
4b is given via S-graph in Figure 5. Instead of connecting the
node of tasks 1 to 6, and then that of 6 to 7 by arcs weighted
by the length of the processing time, as shown in Figure 4b,
zero weighted arcs are used to connect the node of tasks 2 to
6 and that of tasks 11 to 7, respectively.

A feasible schedule for the UIS transfer policy may not be
feasible for the NIS case. This infeasibility can be detected in
the S-graph representation by finding a directed cycle in the
graph, while it cannot be recognized on the conventional rep-
resentation. For example, Figure 6 shows the Gantt chart of
an infeasible schedule of the scheduling problem specified by
the recipe in Figure 4a for the NIS policy; nevertheless, it is
an optimal schedule for the UIS policy. The Gantt chart given
in Figure 6 shows the transfer of material from equipment

Ž . Ž .unit E1 task 1 to equipment unit E3 task 2 simultaneously
Ž . Ž .with the transfer from E3 task 5 to E1 task 6 . This trans-

fer of material can only be performed if an intermediate stor-
age is available to store one of the products while the other is
being transferred, which is the case of the UIS policy. An
optimal solution for the NIS policy of the same example is
given in Figure 7.

Figure 5. S-graph representation of task sequence
l–6–7 of Figure 4b for equipment unit E1 with
NIS policy.

Figure 6. Gantt chart of the optimal schedule for UIS
transfer policy for recipe given in Figure 4a; it
is infeasible for NIS.

Although conventional representation is not convenient for
NIS, an S-graph can represent both NIS and UIS scheduling
problems correctly. For simplicity, in this article the mathe-
matical formulation and the algorithms will be introduced for
only the NIS case.

Mathematical Formulation of the S-Graph
Ž .Formally, directed graph G can be given as a pair N, A ,

where N is a finite set, the set of nodes, and A is a set of
Žpairs of nodes identifying the arcs of the graph that is, A:

.N � N . In an S-graph, two classes of arcs, the so-called
recipe-arcs and schedule-arcs, are specified. Therefore, an

Ž .S-graph is given in the form of G N, A , A , where N, A ,1 2 1
and A denote the sets of nodes, recipe-arcs, and schedule-2
arcs, respectively. It is supposed that A :N � N, A :N �1 2
N, and A l A sØ; furthermore, a nonnegative value,1 2
Ž . Ž .c i, j , which denotes the weight of arc i, j , is assigned to

each arc. In practice, if the arc is established from node i to
Ž . .node j, that is, i, j g A j A , then it is supposed that the1 2

task corresponding to node j cannot start its activity earlier
Ž .than c i, j after the task corresponding to node i starts. Spe-

Žcific types of S-graphs are identified for a recipe that is,
. Žrecipe-graph and for a schedule of all tasks that is, sched-

.ule-graph .

Recipe-graph
A recipe defines the order and type of tasks, the material

transfers among them, and the set of plausible equipment
units of each task. This type of information should be repre-
sented by the graph of a recipe.
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Figure 7. Gantt chart of the optimal schedule for NIS
transfer policy for recipe given in Figure 4a.

Ž .Let one node be assigned to each task task node and one
Ž .to each product product node . An arc is established be-

tween the nodes of consecutive tasks determined by the
recipe, and one is also established from each task node that
generates the product to the corresponding product node. The
weight of an arc is specified by the processing time of the
task corresponding to the initial node of the arc if a single
equipment unit is available for this task and the minimum of
the processing times of all equipment unit if more than one
equipment unit is available.

If multiple batches of a product are to be produced, the
task nodes, the product nodes, and the arcs are multiplied
appropriately. The resultant graph is called task network,
where N and N denote the set of its task nodes and prod-t p

Ž .uct nodes, respectively N lN sØ .t p
In practice, the inputs of a task may not need to be avail-

able at the same time; instead, further constraints may need
to be applied on the timing of these inputs. Stated formally,
the timing of the feeds is to be given as a partial order on
their starting times. In the simplest case, all inputs must be
available simultaneously. In Figure 8, according to this repre-
sentation technique, task 4 has three different inputs that are
produced in parallel by tasks 1, 2, and 3. Obviously, three
pieces of equipment must be prepared simultaneously to feed
task 4.

In general, the practical order of the inputs of a task is
given by the so-called feed-precedence graph of the task. For
example, suppose that input 1 precedes input 3, and input 1
is available simultaneously with input 2 in the part of a task
network given in Figure 9a. Additional nodes and arcs ex-
press the order of precedence of the feeds of task 4 accord-
ing to Figure 9b.

Figure 8. Part of a recipe-graph: simultaneous input
streams to task 4.

The task network extended with a feed-precedence graph
is called recipe-graph. It represents all structural information

Ž .given in a recipe. If G N, A , A is a recipe-graph, it is1 2
acyclic, NsN jN , and A sØ.t p 2

For simplicity, the partial ordering of the timing of the feeds
Žof a task is not examined here for more details of the feed-

. Ž .precedence graph, see Appendix A . Let N ;N be the seti t
of nodes of those tasks that can be performed by equipment
unit i. It is supposed that there is at least one equipment unit
available that can be assigned to a task, that is, the set of task
nodes can be given as N sN jN j ���jN , where N andt 1 2 n i

Ž .N i, js1, 2, . . . , n are not necessarily disjoint.j
Example 1. Suppose that two batches of product A and one

batch of product B are to be produced, where product A is
produced in two consecutive steps. The first step can be per-
formed by any equipment unit given in set S1, and step 2 can
be performed by any equipment unit given in set S2. Product
B is produced in three consecutive steps that can be per-
formed by any of the elements of sets S3, S4, and S5, respec-
tively. The resulting recipe-graph is given in Figure 10.

Schedule-Graph
A specific S-graph, termed schedule-graph, is introduced

to describe a single solution of a scheduling problem; there

Figure 9. Part of a recipe-graph for illustrating feed-precedence graph.
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Figure 10. Recipe-graph: two batches for product A and
one batch for product B.

exists one schedule-graph for each feasible schedule of the
�Ž .problem. S-graph G N, A , A is called a schedule-graph1 2

Ž .of recipe-graph G N, A , Ø , if all tasks represented in the1
recipe-graph have been scheduled by taking equipment-task
assignments into account. The schedule-graph of the optimal
schedule can be effectively generated by an appropriate
search strategy, as will be shown later.

Example 2. Three products are to be produced according
to the recipe given in Figure 11. One equipment unit can be

� 4assigned to each task according to the following: S1s E1 ,
� 4 � 4 � 4 � 4 � 4S2s E3 , S3s E2 , S4s E2 , S5s E3 , S6s E1 , S7s

� 4 � 4 � 4E1 , S8s E2 , and S9s E3 . There are eight different solu-
tions represented by the eight schedule-graphs given in Fig-
ure 12.

For the formal definition of a schedule-graph, suppose that
�Ž . Ž .S-graph G N, A , A is given where G N, A , Ø is a1 2 1

Ž .recipe-graph and A :N � N. Let M is1, 2, . . . , n de-2 i
note the set of nodes of those tasks that are to be performed

�Ž .by equipment unit i according to S-graph G N, A , A . It1 2
is assumed that exactly one equipment unit is assigned to each

Ž .task, that is, M lM sØ i� j, i, js1, 2, . . . , n . Therefore,i j
M , M , . . . , M is such a partitioning of the set of task nodes1 2 n

Ž .N sN jN j ���jN that M :N is1, 2, . . . , n .t 1 2 n i i
A specific graph, called component-graph, will be identi-

fied to show the activity of each equipment unit. Stated for-
�Ž � . Ž �Ž ..mally, S-graph G N , A , A :G N, A , A is thei i 1 i 2 i 1 2

Ž .component-graph of equipment unit i is1, 2, . . . , n if

Figure 11. Recipe-graph of Example 2.

Figure 12. All schedule-graphs of Example 2.

�
�N includes all nodes of M and the end nodes of alli i

Ž �arcs in A starting from any elements of M i.e., N sM j1 i i i
� Ž . 4.k: j,k g A , jgM ;1 i

�
�A includes all recipe-arcs of G , starting from any ele-1i

Ž �Ž . Ž . 4.ments of M i.e., A s j,k : j,k g A , jgM ;i 1 i 1 i

�
�A includes all schedule-arcs of G , starting from the2 i

end node of an arc of A and pointing to any elements of M1i i
Ž �Ž . Ž .i.e., A s j,k : j,k g A , kgM , and � lgM such that2 i 2 i i
Ž . 4.l, j g A .1i

�Ž .S-graph G N, A , A is defined to be a schedule-graph1 2
Ž .for recipe-graph G N, A , Ø and equipment assignments1

Ž .M is1, 2, . . . , n if it satisfies the following four axioms.i
Ž .SG1
G� is acyclic
Ž .SG2

� � 4 �G defines total order on M j j for all jgN and is1,i i i
2, . . . , n.
Ž .SG3

� Ž .The out-degree of every node of N is1, 2, . . . , n is ati
most 1 according to the arcs in A .2 i
Ž .SG4
Schedule-graph G� is the union of its component

n
� �schedule-graphs, that is, G s G .� i

is1
It is important to examine the relation between a

schedule-graph and the set of feasible schedules of a schedul-
Ž .ing problem. Solving a practical problem, arc i, j of an S-
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Figure 13. Component-graphs of schedule-graph No. 2
of Figure 12.

graph expresses that the processing time of the task repre-
Ž .sented by node j must start at least c i, j time later than the

Ž .task of node i started. Therefore, the violation of axiom SG1
cannot result in a feasible schedule; that is, either the time

Ž .precedence or the NIS policy is violated. If SG1 is satisfied,
Ž .the violation of axiom SG2 implies that the scheduling is

incomplete, since the order of certain tasks is not deter-
Ž . Ž .mined. Although axioms SG3 or SG4 are not necessarily

satisfied by a feasible schedule, the optimal solution can al-
ways be generated by reducing the search to those S-graphs

Ž . Ž .that satisfy SG3 and SG4 . Consequently, the optimal solu-
tion can always be generated from the set of all schedule-
graph.

� Ž .Example 2 Re®isited. Component-graphs G is1, 2, 3 ofi
schedule-graph �2 shown in Figure 12 with equipment-task

� 4 � 4 � 4assignments M s 1, 7, 6 , M s 3, 4, 8 , M s 2, 5, 9 are1 2 3
given in Figure 13. Obviously, the schedule-graph with these

Ž .equipment-task assignments satisfies axioms SG1 through
Ž .SG4 .

Basic Algorithm for Optimal Scheduling
The recipe-graph of a scheduling problem is always a sub-

graph of any of its schedule-graphs with identical sets of
nodes. Each arc of a schedule-graph that does not belong to
its recipe-graph is a schedule-arc. Extending the recipe-graph

Figure 14. Main procedure of the scheduling algorithm.

Figure 15. Branching procedure of the scheduling algo-
rithm.

Ž .with arcs in all possible directions by taking axioms SG1
Ž .through SG4 into account, constraints on the assignments

can result in all schedule-graphs. Consequently, all schedule-
graphs and the related assignments can be generated in a
finite number of steps. This graph generation can be per-
formed conveniently by a B&B algorithm, where an equip-
ment unit is assigned to a task and the order of this task is
determined in each branching step.

Branching algorithm
In the proposed B&B procedure for generating all sched-

ule-graphs, one S-graph and a partial assignment belong to a
partial problem and also to a node of the enumeration tree.
The recipe-graph with no assignment serves as the root of
the tree. At any partial problem, one equipment unit is se-
lected and then all child partial problems are generated to
unscheduled tasks through the possible assignments of this
equipment unit. The processing time of a task may depend
on the assigned equipment unit; therefore, assigning an
equipment unit to a task may modify the weight of the
recipe-arcs, starting from the node representing the task. This
procedure is given in Figures 14 and 15. For simplicity, it is
assumed that there is exactly one equipment unit to perform
a task. The main procedure initializes the values of the vari-

Ž .ables Figure 14 prior to calling the branching algorithm
Ž .Figure 15 .

There is a high degree of freedom in realizing the branch-
ing algorithm to select the appropriate or the most effective
search strategy. For instance, the order of the selection of
equipment units can greatly affect the efficacy of the algo-

November 2002 Vol. 48, No. 11AIChE Journal 2563



Figure 16. Bounding procedure of the scheduling algo-
rithm.

rithm. To schedule the ‘‘busiest’’ unscheduled equipment unit
results in an effective search in most cases.

Bounding
The bounding procedure given in Figure 16 first tests the

feasibility of a partial problem. If this test is proved positive,
it determines a lower bound for the makespan of all solutions
that can be derived from this partial problem. If no waiting
time is limited, a schedule-graph is feasible if and only if it is
acyclic. Thus, the feasibility of a partial problem is tested by
a cycle search algorithm. Note that it can be realized by an

Ž . Žefficient polynomial algorithm see Appendix B for the al-
.gorithm . If the waiting time is limited for some intermediate

products, further examination is required, for example, by
solving an LP problem.

Obviously, the S-graph of a partial problem is a subgraph
of the S-graph of any of its child partial problems. Since an
additional arc does not decrease the length of the longest
path of a graph, the length of the longest path of any sub-
graph of a schedule-graph is a lower bound of the longest
path of the schedule-graph. Moreover, the length of the
longest path of a schedule-graph is also a lower bound of the
makespan of the corresponding solution. Consequently, the
following proposition is true.

Proposition 1. The longest path of any subgraph of a
schedule-graph provides a lower bound of the makespan of
the solution related to the schedule-graph.

The longest path of a graph can be generated efficiently by
a polynomial time algorithm; thus, it can be applied effec-

Žtively in solving scheduling problems see Appendix B for the
.algorithm .

At certain partial problems of the B&B algorithm, espe-
cially at the highest levels of the enumeration tree, the longest
path may not give a sharp lower bound simply because no or

Figure 17. Recipe-graph for the illustrative example.

Figure 18. Search tree for the illustrative example:
nodes represent partial problems, arcs la-
beled by the sequence of equipment units,
and bold numbers show the lower bounds.

only few schedule arcs are considered. In general, this bound
can be sharpened by solving a specific LP problem based on

Žthe result of the longest-path algorithm see Appendix C for
.the details in return of an additional computational effort.

If the waiting times of some intermediate products are lim-
ited, LP relaxation is to be used to test the feasibility and
generate a lower bound. Each time that the lower bound of

Ž .the partial schedule of a node partial problem is greater
than the current upper bound or the partial schedule is cyclic
Ž .i.e., it is structurally infeasible , this partial schedule and the
corresponding node on the enumeration tree are pruned.

Illustrati©e example
The recipe-graph is shown in Figure 17, where one batch

of each of the two products is to be generated. The search
tree is depicted in Figure 18. The nodes of the tree represent
the partial problems, and they are numbered in the order in
which the proposed base algorithm generates them. The
branches are identified by the task sequence they introduce.
The lower bound associated with each of the feasible partial
problems is shown in boldface. The node of an infeasible par-

Ž .tial problem is crossed such as No. 4 and No. 7 . The S-graphs
that correspond to these partial problems are shown in Fig-
ure 19.

Ž .The root of the search tree partial problem No. 1 corre-
sponds to the recipe-graph, the longest path, that is, the lower
bound of its makespan is 9. From this partial problem, two
branches, partial problems No. 2 and No. 3, are generated
for the sequence of equipment unit E1: 1�3 and 3�1, with a
lower bound of 12 and 11, respectively. The branch with the
best lower bound is partial problem No. 3, and it is selected
to continue expanding the tree. From this partial problem,

Ž .two branches partial problems No. 4 and No. 5 are gener-
ated: sequences 2�4 and 4�2 for equipment unit E2. Both
partial problems are complete schedules, that is, they can lead
to a new upper bound for the minimum makespan. Partial
problem No. 4 contains a cycle; it must be discarded. Partial
problem No. 5 represents a complete schedule with a
makespan of 13, that is, it is an upper bound for the optimal
makespan. Partial problem No. 2 is the next branch to be
expanded, from which sequences 2�4 and 4�2 for equipment

Ž .unit E2 are generated partial problems No. 6 and No. 7 ;
both are complete schedules. Partial problem No. 6 corre-
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sponds to a schedule with a makespan of 12; it is better than
the current upper bound, and accordingly is set as the new
upper bound of the minimum makespan. Partial problem No.

Ž7 is not explored, since the lower bound of its ancestor par-
.tial problem No. 2 is no better than the current upper bound.

Program Realizations and Applications
The algorithms outlined in the subsections on the branch-

ing algorithm and bounding are considered as a framework
for developing efficient algorithms for solving complex
scheduling problems. Although this framework is itself useful
in solving scheduling problems, it is considered as a base in
developing an efficient solver for complex scheduling prob-
lems by embedding additional acceleration tools. These tools

can be either general-purpose, that is, valid for any problem,
or specific to a class of problems. The former type of tool
exploits the properties of all scheduling problems. For exam-
ple, a partial problem of the B&B procedure can be pruned
if all leaves that can be derived from it are cyclic. Another
type of acceleration tools exploits the properties of a special
class of problems. While, the problem type of independent
tools is to be realized in any scheduling program based on
the framework, the specific tools are to be developed for ex-
tremely complex problems whenever the general-purpose al-
gorithm is incapable of generating the optimal solution in a
realistic time period. Both types of tools may guarantee the
optimality of the solution. The present article examines the
program realizations of the pure framework and its accelera-
tion with a general type of tool.

Figure 19. S-graphs of the partial schedules generated according to the search tree given in Figure 18; longest path
algorithm determines the lower bound.
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Table 1. Recipes of Example 3

Product A Product B Product C Product D

Time Time Time Time
Ž . Ž . Ž . Ž .Task Eq. h Eq. h Eq. h Eq. h

1 E1 6 E2 9 E4 8 E2 7
2 E3 9 E3 15 E1 14 E3 11
3 E4 7 E4 17 E2 16 E1 4

( )Table 2. CPU Time Usage s
�Proposed MILP

No. of Basic Sanmartı et´
� Ž .Batches Algorithm al. 1996 Makespan

4 0.13 3.86 47
5 1.01 51.9 62
6 4.48 � 73
7 62.24 � 87
8 297.5 � 92

�Solved by AMD K-7 Athlon 1 GHz.

Realization of the basic algorithm
ŽThe framework has been developed in Cqq it can be

.downloaded from http:rrwww.dcs.vein.hurdemorschr . In
order to illustrate this framework, we solve Examples 3 and
4.

Example 3. Four equipment units, E1, E2, E3, and E4, are
available to generate four products, A, B, C, and D. The
recipes of the products are given in Table 1.

The proposed basic algorithm and the solution of the MILP
Ž .model presented in Sanmartı et al. 1996 have been com-´

pared by solving this example in generating a different num-
ber of batches of the products. The base problem considers
the production of one batch of each product, that is, four
batches altogether. Then, in order to generate up to eight
batches, the batches of each product were repeated once
more. The results are shown in Table 2 where the MILP

Ž .model has been solved with a generic solver GAMSrOSL .
For six, seven, and eight batches, the MILP did not arrive at

Ž .the optimal solution in reasonable time in several hours , or
the solver crashed.

Example 4. This example was introduced by Voudouris and
Ž . Ž .Grossmann 1994 . Five equipment units stages , E1, E2, E3,

E4, and E5, are available to generate four products, A, B, C,
and D. The recipes and the number of batches of the prod-
ucts are given in Table 3 and Table 4, respectively.

The makespan of the resultant solution is the same as that
Ž .given by Voudouris and Grossmann 1994 . The running time

in solving the basic algorithm using AMD K-7 Athlon 1 GHz
was 20.07 s compared to 293 s using GAMS 2.25rSciconic

Table 3. Recipes of Example 4

Product A Product B Product C Product D

Time Time Time Time
Ž . Ž . Ž . Ž .Task Eq. h Eq. h Eq. h Eq. h

1 E1 8 E1 7 E2 6 E2 4
2 E4 5 E3 3 E4 9 E3 6
3 E5 3 E5 4 E5 3 E5 4

Table 4. Number of Batches for Example 4

Product A B C D

Number of batches 3 3 2 2

2.11 in an IBMrR6000rPower 530 workstation for the model
published by Voudouris and Grossmann. It can be seen that,
without using any embedded acceleration tool, the basic algo-
rithm obtains the optimal solution of the problem in a com-
parable or considerably lower CPU time than a general-pur-
pose sophisticated MILP solver.

Acceleration of the basic algorithm
Even though the basic algorithm may solve scheduling

problems up to a certain size, it may not be sufficiently effec-
tive for practical applications. The basic algorithm, however,
can easily be accelerated by built-in combinatorial algo-
rithms. A simple acceleration tool, the so-called loop predic-
tion, is illustrated here. This tool tests whether an acyclic leaf
can be derived from a partial problem. If the test is negative,
the partial problem is to be pruned, since no feasible solution
can be generated from this partial problem. This acceleration
tool is realized by the loop search algorithm given in Ap-
pendix B. The program that has been developed in
Cqq can be downloaded from http:rrwww.dcs.vein.hur
demorschr. A complex case study illustrates the behavior of
the accelerated algorithm.

Case Study. Nineteen equipment units, E1 through E19, are
available to generate ten products, A, B, C, . . . , J. The recipes
of the products are given in Tables 5 and 6. The changeover
time is 60 min for equipment units E1, E2, E3, and E4, and
90 min for E5, E6, E7, E8, E9, E10, E11, E12, E13, E14, and
E15; all other changeover times are zero.

The number of batches to be produced is given in Table 7
for each product; the sum of the number of batches is 33.
The problem has been solved by the accelerated algorithm
that required 25.27-s CPU time on a PC-Pentium 533 MHz.
The resultant makespan is 7,740 min; Figure 20 shows the
corresponding schedule-graph.

Table 5. Recipe for Products A, B, C, D, and E

Product A Product B Product C Product D Product E

Time Time Time Time Time
Ž . Ž . Ž . Ž . Ž .Task Eq. min Eq. min Eq. min Eq. min Eq. min

1 E1 300 E2 240 E2 240 E1 300 E2 240
E3 120 E3 120 E3 120 E4 240

E4 240

2 E5 60 E6 120 E6 120 E6 120 E5 60
E6 120 E7 90 E8 60 E7 90 E6 120
E8 60 E8 60 E10 120 E8 60 E8 60

E10 120 E12 60 E9 90 E9 90
E12 60 E14 120 E11 90 E10 120
E14 120 E15 60 E12 60
E15 60 E13 90

E14 120
E15 60

3 E16 720 E19 840 E17 540 E16 720 E17 540
E17 540 E18 720 E17 540 E18 720
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Table 6. Recipes for Products F, G, H, I, and J

Product F Product G Product H Product I Product J

Time Time Time Time Time
Ž . Ž . Ž . Ž . Ž .Task Eq. min Eq. min Eq. min Eq. min Eq. min

1 E1 300 E2 240 E4 240 E1 300 E4 240
E3 120 E3 120 E3 120

2 E5 60 E5 60 E5 60 E10 120 E7 90
E7 90 E10 120 E7 90 E11 90 E9 90
E9 90 E11 90 E9 90 E12 60

E11 90 E12 60 E11 90 E13 90
E13 90 E13 90 E13 90 E14 120
E15 60 E14 120

E15 60

3 E16 720 E16 720 E19 840 E19 840 E17 540
E17 540 E17 540

E18 720
E19 840

Table 7. Number of Batches of the Products

Product A B C D E F G H I J

Number of
batches 2 3 5 2 5 4 5 5 1 1

Concluding Remarks
A new framework has been proposed for job-shop schedul-

ing based on an S-graph representation. Instead of solving an
MILP model of the scheduling problem, the procedure given
in the article solves the problem by specific algorithms, in-

Žcluding a sequence of efficient graph algorithms e.g., longest
.path and cycle search algorithms that exploit the unique fea-

ture of the scheduling problem. The solution of the complex
examples illustrates the efficacy of the proposed framework.

Figure 20. Schedule-graph of the optimal solution of the case study.
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This framework provides the basis for further developments
in solving special classes of scheduling problems, for instance,
scheduling related to flexible recipes, complex recipes, and
finite intermediate storage policy, which are the scope of our
current work.
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Figure A1. Part of a recipe-graph: complex procedure constraints are given on the inputs of task 6.
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Figure A2. Fed-batch operation.

Appendix A: Feed-Precedence Graph
Suppose that a task has multiple inputs in the recipe. In

the general case, certain inputs must be fed in parallel to the
equipment, others in certain orders, and some have no rela-
tion given between them. The relationship between the feeds
establishes a partial order among them. This partial order
can be represented by an acyclic directed graph embedded in
the task network. For example, suppose that input l must
precede input 4 and 5, and input 2 must precede input 4 in

Figure B1. Cycle detection algorithm.

Figure B2. Longest path algorithm.

Figure A1a. Moreover, input 2 must be available simultane-
ously with input 3 in the task sequence. The additional nodes
and arcs given in Figure A1b can express this order of prece-
dence. These additional nodes are called feed-precedence
nodes.

Note that for the so-called fed-batch operation, when a task
has an input that must be fed continuously during the proce-
dure of the task, the recipe-arc goes directly to the task node,
bypassing the feed-precedence graph of the task if applicable
Ž .see Figure A2 . The scheduling algorithm can simply take
into account the feed-precedence graphs and the fed-batch
operations.

Appendix B: Combinatorial Algorithms
Ž .The cycle-detection algorithm Figure B1 is considered to

be a feasible test of a partial problem of the proposed B&B
Ž .algorithm, and the longest-path algorithm Figure B2 is used

in generating a lower bound of the makespan of a partial
problem. More details of these algorithms can be found, for

Ž .example, in Cormen et al. 1997 .

Appendix C: LP Model for Determining a Lower
Bound of a Partial Problem

Suppose that length L of the longest path to node j in thej
S-graph of a partial problem has been determined for all jg

�N. Let M denote the set of nodes given by formula M s j: ji i
� 4 � 44 ŽgN_M & jgu N for all kg 1, 2, . . . , n _ i is1, 2, . . . ,i i k

. Ž .n . Let c is1, 2, . . . , n be defined asi

c smax max L q t , min L q t ,Ž . Ž . Ýi j i j j i jž /
jg M jg N rMi i i jg Mi

where t is the processing time of task j by equipment unit i.i j
The solution of LP problem

min X
s.t.

m1

c q x F X is1, 2, . . . , nŽ .Ýi i j
js1

xi j G1 j: jg 1, 2, . . . , N & S �1� 4� 4Ý Ž .t jti jig Sj

x G0 is1, 2, . . . , n , js1, 2, . . . , mŽ .i j i
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Table C1. Recipes of Example 5

Product A Product B Product C

Time Time Time
Ž . Ž . Ž .Task Eq. h Eq. h Eq. h

1 E1 8 E1 9 E1 7
E2 11 E2 7

2 E2 15 E3 5 E3 4
E3 5

Figure C1. Recipe-graph of Example 5.

gives a lower bound for the partial problem, where
nsnumber of equipment units;

Ž .m s the cardinality of set N _ M j M , that is, mi i i i i
Ž .s N_ M jM is1, 2, . . . , n ;Ž .i i i

Ns the set of task nodes;t
Ž .S sset of equipment units that can perform task node jj

Ž .js1, 2, . . . , N ;t

Ž .x s variable processing time of equipment unit i in taski j
Ž . Ž .node j is1, 2, . . . , n, js1, 2, . . . , m ; andi
Ž .Xs variable lower bound for the partial problem.

Example C1. Three equipment units, E1, E2, and E3, are
available to generate three products, A, B, and C. The recipes
of the products are given in Table C1.

The recipe-graph of the example is given in Figure C1,
where the value of the longest path to each node is given
above the node.

The LP model will be given for the root of the enumera-
tion tree of the B&B algorithm, that is, for the recipe-graph.

� 4 � 4Since M s 1 , M sØ, M s 4,6 , c s8, c s0, and c s1 2 3 1 2 3
16, the LP problem to be solved is

min X

s.t.

8q x q x F X13 15

x q x q x F X22 23 25

16q x F X32
x x13 23q G1
9 11

x x15 25q G1
7 7

x x22 32q G1
15 5

x , x , x , x , x , x G0.13 15 22 23 25 32

The resulting lower bound is Xs17.4; it is a sharper bound
than that given by the longest-path algorithm, or, 14.

Case Study Re®isited. For the root of the enumeration tree,
the lower bound given by the longest-path algorithm is 387
min, while it is 1,261 min when using the LP model.
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