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Multipurpose batch processes entail various operational policies that have been widely investigated
in published literature. In this paper, no-intermediate-storage (NIS), zero-wait (ZW) and common-
intermediate-storage (CIS) operational policies are of particular interest. In all these policies, no dedicated
storage facility is available between two consecutive units. Unlike the other operational policies, these
particular policies bear some subtle practical infeasibility that has gone unnoticed in literature. In essence,
this infeasibility has been reported as optimal, thus assumed to be feasible, by various authors using
mathematical programming techniques. It pertains to a unit transferring product to one or more units
whilst simultaneously receiving feed from another, which is practically infeasible and as such need not
be considered as a possible solution. This feature is particularly conspicuous in batch processes with
complex recipes wherein production paths can be in opposite directions. This paper presents the unique
feature of the S-graph framework to isolate cross-transfer during optimization, whereas the available
mathematical programming methods inherently fail neither to detect nor to eliminate this infeasibility. A
few examples taken from published literature are presented for demonstration purposes.

© 2008 Published by Elsevier Ltd.

1. Introduction

The problem of batch process scheduling has been under inves-
tigation for the last three decades following the emergence of high
value added specialty chemicals as key contributors to the economy.
Contrary to their continuous counterparts, batch processes have an
intrinsic ability to adapt to sudden changes in market conditions
which is the characteristic that has made them attractive in low vol-
ume manufacturing. In particular, scheduling involves the allocation
of tasks to limited resources with the intention of either minimiz-
ing the makespan or maximizing throughput. Minimizing makespan
is encountered where the production profile is known a priori and
the objective is to realize it in the shortest possible time. On the
other hand, the maximization of throughput problem relates to a
presupposed time horizon over which maximum production should
be achieved. The latter problem is also ideally suited for economical
objectives like maximization of revenue or profit.

Recent advances in the field of batch process scheduling
have aimed to address the issue of lengthy computational times
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emanating from the combinatorial nature of scheduling problems.
In Kondili et al. (1993) developed a mixed integer linear program-
ming (MILP) formulation for throughput maximization together with
a recipe representation known as the state task network (STN). The
mathematical formulation was based on even discretization of the
time horizon which resulted in computational difficulties due to
the excessive number of binary variables. Subsequent developments,
therefore, were aimed at reducing the binary dimension through un-
even discretization of the time horizon using a presupposed num-
ber of time points. This technique was initially proposed by Schilling
and Pantelides (1996). Notable extensions to this contribution in-
volve the work of Castro et al. (2001), Castro and Grossmann (2006),
Ierapetritou and Floudas (1998), and Majozi and Zhu (2001). A de-
tailed review on uneven discretization of time horizon formulations
is given by Floudas and Lin (2004). The major limitation of all these
methods is that the degree of optimality depends on the presup-
posed number of time points.

Added to the issue of computational times, much research ef-
fort has been directed towards scheduling of batch plants that are
characterized by complex recipes with the aim of makespan min-
imization. The recipe complexity provides another dimension of
combinatorial difficulty in scheduling. In this class of batch opera-
tions, different batches not only follow different routes, but they also
involve production paths in opposite directions. The contributions of
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Kim et al. (2000) and Méndez and Cerdá (2003) are noticeable in
this regard. In both of these contributions the subtle infeasibility
associated with cross-transfer is seriously overlooked and reported
as an optimum, hence this paper.

Recently, a graph theoretic framework known as the S-graph
has been introduced with great capabilities in combinatorial prob-
lems (Sanmartí et al., 1998, 2002). The strength of this framework
essentially lies in its capability to directly exploit the problem struc-
ture with drastic reduction in computational intensity. Once all the
processing tasks have been represented in the recipe, an optimal
schedule can be generated using the S-graph framework. Recent
comparisons in performance with respect to CPU time have demon-
strated that the S-graph tends to obtain the optimal solutions
relatively faster than the mathematical techniques (Holczinger
et al., 2007). The S-graph framework has been successfully applied
to both minimization of makespan (Romero et al., 2004; Sanmartí
et al., 2002) and maximization of throughput problems (Majozi and
Friedler, 2006).

In this paper, the inherent capability of the S-graph framework to
isolate and exclude infeasible candidate solutions during the course
of optimization is highlighted through comparison with published
mathematical programming techniques. This contribution was mo-
tivated by the fact that published mathematical programming meth-
ods frequently generate infeasible schedules due to the existence of
cross-transfer which is inherent in model formulation. Of particular
interest to this paper are the no-intermediate-storage (NIS), zero-
wait (ZW) and common-intermediate-storage (CIS) operational poli-
cies. In the NIS policy a product is allowed to stay in the processing
unit until the next unit is available to conduct the subsequent task
in the recipe, whilst in ZW operational policy the next task has to
commence immediately after the preceding task the recipe. The CIS
policy involves a storage facility that is shared by various products
within the schedule.

Overall, the paper is organized as follows. Section 2 gives the elab-
orate description of the problem at hand followed by Section 3 with
a focus on the drawback of mathematical techniques. Section 4 high-
lights the capabilities of the S-graph in isolating and excluding the
cross-transfer infeasibility, whilst Section 5 gives the comparison of
solutions obtained from mathematical programming techniques and
S-graph based algorithms. Lastly, conclusions are given in Section 6.

2. Problem description

Fig. 1 shows the Gantt chart of the production of two products,
P1 and P2, that share processing units U1 and U2. According to the
depicted schedule, P1 is transferring its intermediate from U1 to

Fig. 1. Gantt chart showing cross-transfer.

U2 at time t1
′, whilst P2 is doing the same, albeit in the opposite

direction, hence the cross-transfer.
In physical terms, the schedule in Fig. 1 stipulates that U1 is

discharging the intermediate corresponding to P1 whilst simulta-
neously receiving the intermediate corresponding to P2. Similarly,
U2 is receiving the intermediate corresponding to P1 whilst dis-
charging the intermediate corresponding to P2. In the case of NIS,
CIS and ZW policies this occurrence is certainly infeasible from the
practical standpoint and as such cannot be considered as a possi-
ble solution. Practically, each unit has to be discharged completely
before any feed can be introduced. Although only two units and
two products have been used in the foregoing description, simi-
lar infeasibility could be encountered where more than two units
and products are involved. Regardless, of its practical infeasibility,
this occurrence has been reported widely in literature as an optimal
solution.

Given the obvious nature of this practical infeasibility and the
fact that it has not been isolated by the available mathematical pro-
gramming techniques (see for example Kim et al., 2000; Méndez
and Cerdá, 2003), close scrutiny into this drawback of mathematical
techniques is necessary. Section 3 focuses on why known mathe-
matical techniques inherently fail to detect and exclude this type of
infeasibility.

3. Limitations of the MILP approach in eliminating cross-transfer

There exists various mathematical formulations of a scheduling
problem. Most of these formulations exhibit a MILP structure, but
differ in the representation of the time horizon of interest. Overall,
some are based on uniform time discretization and others on non-
uniform time discretization. A detailed account on these has been
given by Floudas and Lin (2004).

Regardless of their fundamental distinction, mathematical meth-
ods behave similarly at the optimal point for the same objective
function, e.g. minimization of makespan. In the solution, the bi-
nary variables are fixed and the sequential constraints are similar.
Two types of sequential constraints are inherent in the description
of a scheduling problem. These are the sequence constraints of
two consecutive tasks for a particular product as defined by the
recipe and sequence constraints of two consecutive tasks in the
same unit as defined by the production schedule. Of particular in-
terest in this paper is when the first type of sequence constraints
involves separate units and the second type involves different
products.

The subtle infeasibility that occurs frequently in the solutions of
mathematical formulations is a consequence of the following anal-
ysis. Let ti denote the starting time and ti′ the finishing time of
task i, where ti� t′i . The difference of the starting and finishing time,
which signifies the duration of a task in a unit, can be different for
different mathematical models. Nevertheless, it always contains the
processing time of the task and waiting time of the material in the
current equipment unit in the case of NIS policy. For the ZW oper-
ational policy the waiting time is always zero. It can also contain
transfer time.

In a situation where consecutive tasks of a recipe take place in

different units, the sequence constraint can be expressed as tfij� tsi′j′ ,

where tfij is the finishing time of task i in unit j and tsi′j′ is the starting

time of task i′ in unit j′. Both i and i′ belong to the same recipe. In the

NIS, CIS and ZW cases tfij= tsi′j′ . On the other hand, if two consecutive

tasks involve the same unit, and not necessarily the same recipe,

the sequence constraint can be expressed as tfij� tsi′j, where i and

i′ are two consecutive tasks in unit j. In the situation depicted in
Fig. 1, wherein two products and two equipment units are involved,
the following set of constraints hold. It should be noted that this
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analysis pertains to zero transfer times.

t′1 = t4

t′3 = t2

t′1� t2

t′3� t4

This sequencing is an obvious choice in makespan minimization
problem, and the only feasible solution to this set of constraints is
t′1 = t4 = t′3 = t2. In essence, Fig. 1 represents this apparent solution.
However, this is infeasible in any practical setting because it means
cross-transfer. This infeasibility is easily detected and eliminated in
the S-graph framework as detailed in the next section.

4. Inherent capabilities of the S-graph framework in addressing
the problem

The S-graph framework provides a robust representation of the
problem structure in scheduling problems. The detailed description
of the S-graph framework has been presented by Sanmartí et al.
(2002). However, a brief description of the S-graph is given in this
paper to facilitate understanding.

A recipe of a scheduling problem defines the order of tasks, the
material transfer between them, and the set of plausible equipment
units for each task. The S-graph framework represents this type of
information. In an S-graph, a node is assigned to each task (task
node) and a node is introduced for each product (product node). It
is supposed that at least one equipment unit is available to execute
each task. Set Si denotes the set of equipment units that can perform
task i (represented by task node i). The processing orders of two
consecutive tasks are given by aweighted arc (recipe-arc) established
between the nodes of tasks. Furthermore, additional recipe-arc is
established from the nodes of tasks generating the products to the
corresponding product node. The weight of a recipe-arc is specified
by the processing time of the task, i.e. the weight of a recipe-arc is
positive and not equal to zero. The processing time of a task may
be different for different equipment units. In this case, the weight of
the recipe-arc is the shortest processing time. The resultant graph
is called task network. In order to generate multiple batches of the
products, the appropriate part of this S-graph is repeated according
to the number of batches to get the recipe-graph. In multiple batch
case the recipe-graph can be extended by auxiliary-arcs between the
appropriate task nodes of different batches (see details in Holczinger
et al., 2002) which accelerate the solution procedure.

An S-graph can represent NIS, ZW and CIS policies appropriately.
Let �j denote the set of those tasks that follow task j according to the
recipe and an equipment unit is assigned to task j and to task k in
the order of processing, then, a zero weighted arc (or an arc whose
weight is equal to the length of the changeover time if applicable)
is established from each element of �j to k. This type of arc called
schedule-arc. In Fig. 2, the arcs connecting node T2 to node T4 and
node T3 to node T4 are the schedule-arcs representing the order of
processing in U1. These arcs suggest that task T4 follows task T1 in
U1.

In both NIS and ZW cases no intermediate storage is available
which implies that an equipment unit is not free after executing a
task until the material stored in it has been transferred to the equip-
ment unit of the next task. Schedule-arcs express these constraints
properly. In case of the CIS policy, treating common storage as an
ordinary processing unit the task of which is simply storage, reduces
the problem to a typical NIS case.

Fig. 2. Schedule-arcs expressing, that U1 is assigned to T1 and then T4.

Fig. 3. Cyclic S-graph: corresponding schedule infeasible.

A specific S-graph, schedule-graph, represents a single solution
of a scheduling problem. A schedule-graph exists for each feasible
schedule. S-graph is called a schedule-graph of recipe-graph if all
tasks represented in the recipe-graph have been scheduled by taking
into account equipment-task assignments.

As aforementioned, if an arc (recipe-arc, schedule-arc or
auxiliary-arc) is established from node i to j, then it is supposed that
the task corresponding to node j must start its activity at least c(i,
j) time later than the task corresponding to node i started, where
c(i, j) denotes the weight of the arc (i, j) and c(i, j) � 0. This is also
represented in Fig. 2.

In an S-graph, arcs signify precedence in time, the violation of
which always results in infeasibility. Whenever this precedence is
not violated, the schedule related to this S-graph is not only feasible
from the modelling perspective, but also practically implementable.
The unique property of the S-graph that deserves emphasis at this
point is that there exists clear congruence between S-graph results
and practice. This congruence is not necessarily true for the math-
ematical programming approaches. The presence of any cycle in an
S-graph invariably signifies practical infeasibility. If a cycle contains
only schedule-arcs, then it means cross-transfer. If recipe-arcs are
also encountered in a cycle, this might mean other form of practi-
cal infeasibility, i.e. no corresponding schedule or Gantt chart exists.
These two cases are depicted in Figs. 3 and 4. In Fig. 3, the arcs con-
necting node 5 to 4 and node 4 to 1 are the schedule-arcs. The rest
of the arcs in the cycle are recipe-arcs. The existence of a cycle in
the S-graph as appears in Fig. 3 suggests an infeasible solution with
no corresponding Gantt chart. According to Fig. 3, task 1 should start
in U1 at least c(2,5) time units after the commencement of task 2
in U2. This contradicts the recipe which requires that task 1 should
precede task 2 by at least c(1,2) time units. Consequently, no sched-
ule can be derived without violating time precedence from the cyclic
graph shown in Fig. 3.
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Fig. 4. Cross-transfer for three units and three products: (a) cyclic S-graph, (b) Gantt
chart.

Fig. 5. Traditional graph representation of task sequencing: cross-transfer not
detected.

Table 1
Processing times for literature example (Kim et al., 2000; Méndez and Cerdá, 2003)

Products Units

U1 U2 U3 U4

A 15 8 12
B 10 20 5 13
C 20 7 9
D 7 17 5

In Fig. 4(a), the schedule-arcs connect node 2 to node 4, node
4 to node 6, and node 6 to node 2, thereby forming a cycle as
shown. The Gantt chart corresponding to the S-graph in Fig. 4(a) is

Fig. 6. Sequence of processing units for the literature example.

Fig. 7. Supposedly optimal solution obtained by Kim et al. (2000).

shown in Fig. 4(b). This Gantt entails cross-transfer as elaborated in
Section 2 of this paper, which constitutes infeasibility.

The feasibility test of a scheduled (or partially scheduled) S-graph
is very effective. Cycles of a directed graph, can be detected easily
with a simple cycle search algorithm, which in return is an effective
way of recognizing if an S-graph represents an infeasible schedule.
Conversely, a non-cyclic S-graph in which the order of precedence
of all the tasks is obeyed represents a feasible solution.

It should be emphasized that the ability of the S-graph framework
to detect cycles or infeasible schedules is not an inherent feature
of all graph-theoretic frameworks, but a specific property of the S-
graph. Using a typical graphical representation in which the task
sequence in every equipment unit is defined by a set of conjunctive
arcs connecting the tasks assigned to the same unit, the schedule
shown in Fig. 4(b) would correspond to the graphical representation
depicted in Fig. 5. Clearly, there are no cycles in Fig. 5 for recognizing
infeasibilities.

Because of its combinatorial characteristics, a branch-and-bound
(B&B) procedure may generate the optimal schedule of a scheduling
problem, i.e. the S-graph that corresponds to the minimal makespan.
The recipe-graph serves as the root of the enumeration tree of the
B&B procedure. At any partial problem, one equipment unit is se-
lected and then all child partial problems are generated through the
possible assignments of this equipment unit to unscheduled nodes.
Every partial problem can be represented by an S-graph and its fea-
sibility can be checked by a cycle search algorithm as mentioned be-
fore. The detailed solution procedure and an acceleration technique
have been presented by Holczinger et al. (2002) and Sanmartí et al.
(2002), respectively.

5. Comparison of MILP and S-graph solutions

In this section of the paper, comparisons between the solutions
of mathematical programming methods and the solutions obtained
using S-graph framework are presented. Table 1 shows data for the
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Fig. 8. Cyclic S-graph corresponding to the infeasible schedule in Fig. 7.

Fig. 9. Supposedly optimal schedule obtained by Méndez and Cerdá (2003).

Fig. 10. Globally optimal schedule obtained using the S-graph framework.

literature example taken from Kim et al. (2000). The example in-
volves four products, A, B, C and D that are processed in units U1,
U2, U3 and U4 as required by the recipe. The sequence of processing
units for each product is shown in Fig. 6.

Depicted in Fig. 7 is the schedule for the literature example ob-
tained using the MILP formulation of Kim et al. (2000). The authors
presented this schedule as a globally optimal solution to the prob-
lem. In their case, a common storage facility for all the products was

introduced into the problem to cast it as a finite intermediate storage
(FIS) operational policy. However, it is evident that if the CIS facility
is treated as one of the operational units, the task of which is simply
storage, the problem reduces into the NIS case. Close scrutiny of
Fig. 7 with this understanding in mind immediately confirms that
the schedule shown is infeasible from the practical standpoint. In
particular, 30h into the makespan, product B is transferred from U2
to U3 whilst product C is transferred from storage to U2 and product
D from U3 to storage at the same time, which is infeasible due to
cross-transfer. This observation implies that the reported solution is,
in essence, not correct. Fig. 8 shows the S-graph corresponding to
Fig. 7 with the cross-transfer, i.e. infeasibility, highlighted in bold.
A similar solution, as shown in Fig. 9, was also reported by Méndez
and Cerdá (2003) using the MILP formulation.

On the other hand, Fig. 10 shows an optimum schedule obtained
using the S-graph framework, whilst Fig. 11 shows the S-graph cor-
responding to the schedule. No occurrences of cross-transfer are ob-
served in both the schedule and the S-graph, hence a true optimum.
Overall, the minimum makespan for this problem is 71h and not
60h.

6. Conclusions

The unique strength of the S-graph framework in eliminating the
infeasibility, termed cross-transfer, has been justified in detail. In
addition, the inherent weakness of the MILP approaches in isolating
this infeasibility, which occurs in NIS and ZW operational policies,
has been fully demonstrated. This drawback of the MILP approaches
has gone unnoticed in the past, with infeasible solutions reported as
globally optimal.
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Fig. 11. S-graph without cycle corresponding to the optimum schedule in Fig. 10.
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